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Abstract. A common method for improving a genetic programming
search on difficult problems is either multiplying the number of runs or
increasing the population size.

In this paper we propose a new search strategy which attempts to
obtain a higher probability of success with smaller amounts of compu-
tational resources. We call this model Divide & Conquer since our al-
gorithm initially partitions the search space in smaller regions that are
explored independently of each other. Then, our algorithm collects the
most competitive individuals found in each partition and exploits them in
order to get a solution. We benchmarked our proposal on three problem
domains widely used in the literature. Our results show a significant im-
provement of the likelihood of success while requiring less computational
resources than the standard algorithm.

1 Introduction

When one uses Genetic Programming to solve a problem, he has two expectan-
cies: on the one hand, maximize the probability to obtain a solution, and on the
other hand, minimize the amount of computational resources to get this solution.

Unfortunately performance on a given problem may be strongly dependent
on a broad range of parameters, including the choice of the functions and ter-
minals set, size and composition of the initial population, maximum number of
generations and so on.

To overcome the difficulties of such problems a traditional method was to use
a larger population and to increase the maximum number of generations [1][6].
Large populations were considered beneficial because they maintain diversity
and may avoid premature convergence. However, more recent works advocate
for different approaches, using either populations of moderate or variable size
(e.g. [5][9]), or using multiple independent short runs (e.g. [8][2]) in order to
outperform a long run.

Recent research [4] confirms that the composition of an initial population has
a crucial influence on the probability of success for a problem. It is suggested
that the initial population must contain a sufficient quantity of useful building
blocks and that these blocks must be part of the fittest individuals. Moreover it
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was shown in [3] that the building blocks used during the GP process are not
dispersed throughout in the initial population, but is instead concentrated in a
subset of individuals.

Thus the effectiveness of GP to solve a problem is conditioned by its ability
to create potential good individuals in the initial population and identify the
individuals which are most likely to provide building blocks useful to find the
solution.

In this paper we build on these existing results and propose a new model
attempting to meet these requirements. Our model works in two phases. During
the first phase we partition the search space in smaller regions that are explored
independently of each other. We do so by generating initial populations carefully
tailored to maximize the coverage of each region. Then, in the second phase, we
collect the most competitive individuals found in each region and explore the
resulting search space. In other words, we attempt to generate individuals which
maximize the coverage of the search space and then we attempt to exploit the
most promising individuals. Our strategy aims to obtain a solution with a better
probability of success for a lower computational cost.

The outline of the paper is as follows. In Section 2 we describe our strategy in
detail. Section 3 presents the experimental procedure used to study the behavior
of the new algorithm with various metrics. Section 4 discusses the results of our
experiments. Section 5 concludes and anticipates on further evolutions of our
strategy.

2 Divide & Conquer Strategy

Our proposal, that we call Divide & Conquer, is inspired by earlier models for
coarse-grained parallelization of the genetic programming process [10][11]. These
models build a net of subpopulations called “demes”. Each deme evolves inde-
pendently of one another during a sequence of consecutive generations. Then,
demes may exchange information by migrating individuals between each other
according to a predefined pattern. Our proposal uses the concept of demes but
works differently.

2.1 Model Description

First of all, we apply a reduction and differentiation function on the functions set
FS , as follows. Let n denote the cardinality of FS . We build all possible subsets
of FS composed of exactly p elements, where p is a parameter of the algorithm
such that p < n. We may apply the same procedure also on the terminals set TS ,
or on the union of both TS ∪FS . If the reduction and differentiation is applied on
FS then the elements of TS are added to the new subsets, if it is applied on TS

we add the elements of FS . We denote by fRD the reduction and differentiation
function and by RDi

SS (i ∈ [1, n]) the subsets generated.
Each deme operates on one of the subsets generated by fRD. It follows that

each deme operates on a subset of functions and terminals different from the
subset of any other deme. Subsets obtained from TS must contain at least one
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element and those obtained from FS must contain at least two elements or, two
elements and one element respectively from TS and FS . Otherwise, the use of
an evolutionary approach would be meaningless.

The number of demes must be the same as the number of the subsets generated
by fRD, that is numOfDemes = Cp

n. The algorithm analyzed in this paper use
p = n − 1. It follows that, in our case it will be numOfDemes = Cn−1

n , hence
numOfDemes = n.

At this point, the initial population of each deme is constructed based on the
subset associated with that deme. Each deme evolves independently of each other
deme, until either the problem is solved or a maximum number of generations
maxDemeGenNumber is reached.

If no solution is found, i.e., all demes reach the maximum number of gen-
erations, we merge all the demes and keep only the best individuals based
on a ranking selection procedure. This new population then evolves as usual,
i.e., either until the problem is solved or a maximum number of generation is
reached.

Full details about our algorithm are given in Figure 2.

2.2 Model’s Dynamics

An example of the algorithm’s dynamics is shown in Figure 1 where the final
population size is 500, the maximum number of generations is 95 and the maxi-
mum number of generations for a deme is 5. For this example we have chosen to
reduce only the functions set. The algorithm initiates by creating 4 demes which
evolve independently for 5 generations. Then, the individuals of the demes are
ranked according to their fitness. The best 500 individuals are used to build up
a new population. This population evolves until the problem is solved or until
the maximum number of generations is reached.

Fig. 1. Example of the Divide & Conquer strategy
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divideAndConquer(TS , FS , CS, populationSize, maxGenNumber, maxDemeGenNumber)

TS Terminals set
FS Functions set
CS the set chosen by the user where fRD is applied either TS, or FS, or TS∪FS

populationSize Population size
maxGenNumber Maximum number of generations
maxDemeGenNumber Maximum number of generations for each deme

1. n = |CS|
2. numOfDemes = Cn−1

n = n // Number of demes
3. Generate subsets RD1

SS , RD2
SS , . . . , RDn

SS by applying fRD on CS

4. if CS == FS then
Foreach i ∈ [1, n], RDi

SS = TS ∪ RDi
SS

5. else if CS == TS then
Foreach i ∈ [1, n], RDi

SS = FS ∪ RDi
SS

6. demePopulationSize = floor

�
populationSize

|TS∪FS |−1

|TS∪FS |
�

// Population size for each deme

7. j = 1 // Deme counter

8. while problem is not solved or j ≤ numOfDemes

(a) Randomly initialize a deme population Dj from elements of RDj
SS

(b) Dj = evolve(Dj , demePopulationSize, maxDemeGenNumber)
(c) Next deme: j = j + 1

9. Create a new population P composed of the best ranked individuals in
�numOfDemes

k=1 Dk

10. P = evolve(P, populationSize, maxGenNumber)
11. Get the best individual from P

evolve(population, populationSize, maxGenNumber) : finalPopulation

population Population to evolve
populationSize Population size
maxGenNumber Maximum number of generations
finalPopulation the population returned after evolution

1. i = 0 // Initial Generation
2. Pi = population // Population at a given generation i

3. while problem is not solved or i < maxGenNumber
(a) Evaluate population Pi

(b) Generate a new population Pi+1 by reproduction, crossover, mutation of individuals
i. Select genetic operation O(Or , Oc, Om)
ii. Select best individuals BS from current population (Pi)
iii. Generate offspring (O, BS , Pi+1)

(c) Next generation: i = i + 1

4. return Pi

Fig. 2. The Divide & Conquer algorithm

We used a little number of generations to evolve the demes since we do not
expect to find a solution in a deme but only to explore different regions of the
search space and then to make emerge potential good individuals. In a second
step, the final population is evolved on a longer period of time in order to exploit
the building blocks included in the best individuals discovered during the explo-
ration step. Note that we construct demes in such a way that the population
size of a deme is smaller than the size of the final population. The reason for
this choice is twofold. On the one hand, we believe we can reduce the population
size since the search space is substantially smaller. On the other hand, we increase
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the probability that the final population will include individuals from different
demes, thereby increasing its diversity.

3 Experimental Procedure

We benchmarked our proposal on a range of standard test problems used in
genetic programming research. We present them briefly here but a more detailed
description can be found in [6].

Multiplexer 6 bits. The goal is to determine a boolean function which decodes
a binary address and restores the value contained in the corresponding reg-
ister of data. The training set consists of the 64 possible combinations of
inputs-outputs. The fitness function evaluates the number of correct answers
provided by the program considered on the whole set of training.

Santa Fe ant. An artificial ant tries to find some pieces of food which are
arranged along a path on a two dimensional grid. The “Santa Fe Trail” is an
irregular trail composed of 89 food pellets. The fitness function counts the
number of pieces of food picked up by the ant.

Symbolic regression. The goal is to find a mathematical expression, in sym-
bolic form, that fits a given sample of data points. Our training set is com-
posed of 81 elements corresponding to all combinations of the integer values
taken in the interval [−4, 4] assigned to each combination of input’s variables.
The fitness function computes the sum of the errors on the training set i.e.
the sum of the distances between the desired values and those obtained with
the program considered.

We used a second degree polynomial function with two parameters:

2x2 − 3y2 + 5xy − 7x + 11y − 13

We indicate functions and terminals set for each problem in Table 1

Table 1. Terminals and functions set

Multiplexer 6 bits Santa Fe ant Symbolic
regression

Terminals set A0, A1, D0, D1, D2, D3 Left, Right, Move 1, x, y

Functions set And, Or, Not, If IfFoodAhead, Progn2, Progn3 +, −, /, ×

For our experiments we used Sean Lukes Evolutionary Computation and
Genetic Programming Research System (ECJ13) which is freely available on
the web at http://cs.gmu.edu/ eclab/projects/ecj/. We developed a com-
panion package which implements our Divide & Conquer model without any
modification to the original API.

The first two problems are provided with the API, for the third we slightly
modified the code of the multivalued regression example in order to implement
our own function.
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For each problem, we executed the following algorithms.

Classical GP. For comparison purpose, we used the standard GP algorithm
with populations size 500, 1000, 1500 and 2000.

Divide & Conquer. For each problem we apply the Divide & Conquer strategy
by reducing either the terminals set, or the functions set, or the union of
both. The size of the final population, as resulting from merging the demes,
was set to 500. We refer to these as follows:
D&C (FS) when the reduction and differentiation function fRD is applied
only on FS

D&C (TS) when fRD is applied only on TS

D&C (FS ∪ TS) when fRD is applied on FS ∪ TS

Divide & Conquer naive. In order to evaluate the effectiveness of our reduction
and differentiation procedure, we repeated the very same tests as those of
the previous suite, but without applying fRD. For example, we repeated the
test D&C (FS) with the same number of demes but without applying fRD

on FS .

It can be seen that we executed 10 tests for each problem. Each test is the
result of 100 independent executions. Each execution starts with a different seed
for the random number generator. Moreover, we used the same seeds for each
test.

We allocate the same maximum number of fitness evaluations for each test.
That is, the generation at which that number of fitness evaluation is reached
(200000 in our experiments) is the last generation. The parameters common to
all tests are summarized in the Table 2.

Table 2. Parameter settings

Parameter Setting
Selection Tournament of size 7
Initialization method Ramped Half-and-Half
Initialization depths 2-6 levels
Maximum depth 17
Internal node bias 90% internals, 10% terminals
Crossover rate 90%
Reproduction rate 10%
Number of runs 100

Max number of generations for a deme 5

We focused on the following metrics:

Percentage of success , a run is considered successful if the algorithm finds an
optimal solution.

Number of fitness evaluations performed on successful runs.



A Divide & Conquer Strategy for Improving Efficiency and Probability 19

Time spent on successful runs. This index captures the fact that each evaluation
has its own cost, depending for instance on the number of nodes or the
complexity of each node in that evaluation. The previous index, in contrast,
treats all evaluations as having the same cost.

Obviously, the absolute value of the “time” performance index is not very
meaningful: while probability of success and number of evaluations describe
properties that are intrinsic to the genetic programming process, time is related
to the specific hardware and software platform used. However, as we shall see,
the normalized value of the “time” performance index does provide important
insights into the behavior of the algorithms.

4 Results

Figure 3 shows the percentage of success achieved by each test. We do not report
the percentages of success for the Multiplexer 6 bits because almost all tests reach
100% (only the test based on the standard algorithm with a population size of
500 give a value sligtly lower with 97% of success).

We note that our proposal exhibits the best probability of success, provided
the differentiation and reduction function is applied either on the function set
FS or on the union FS ∪ TS . In particular, for the symbolic regression problem,
the improvement with respect to the best result with the classical GP algorithm
is 27% and 22%, respectively. For the ant problem the improvement is 20% and
19%, respectively. It can be seen that the Santa Fe ant problem benefits by our
strategy whereas it is considered as a deceptive problem[7].

We also note that, with the classical GP algorithm and for a limited number of
evaluations, use of a larger population may improve the probability of success but
up to a certain upper bound. For example, in the ant problem, the performance

Fig. 3. Percentage of success (for the classical algorithm we indicate in parenthesis the
population size)
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Fig. 4. The upper row of charts presents the average and standard deviation number
of fitness evaluations and the lower row, the average and standard deviation of the
normalized time

with initial population 2000 is worse than with initial population 1500. In the
symbolic regression problem we have not reached the upper bound, however, the
improvement from 1500 to 2000 is quite small.

The next suite of experiments is meant to assess the efficiency of the meth-
ods (cf. Figure 4). So we counted for each test the average number of fitness
evaluations for all runs which achieve a success. We also measured the average
time consumed Te for the same runs, and normalized it versus the slowest one

Te
Teslow

. For example, the standard algorithm applied to the ant problem with a
population size of 500 obtains a success after 60000 fitness evaluations or after
22% of the computing time used by the slowest test (D&C naive(FS)).

Once again, the Divide & Conquer strategy using fRD applied on FS or on
TS ∪FS achieves the best results for the ant and symbolic regression problem and
that, independently of the metric used. For the multiplexer problem, there is nei-
ther improvement, nor a significant computational overload for our model. As our
approach uses several demes, we did not expect to give any benefits to problems
which can be solved in a small number of generations with small populations.

As an aside, the results in Figure 4 confirm that measuring the (normalized)
time required for each test does provide important insights into the cost of
each algorithm. For example, in the ant problem, the D&C naive(FS) and D&C
naive(TS) are by far the most expensive tests, but this fact would be hidden if
one assumed that all evaluations have the same cost.
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Fig. 5. Cumulative probability of success versus normalized time for the ant and
symbolic regression problem

Finally, we evaluate the cumulative probability of success as a function of the
computational cost (measured by the normalized time). For example, the stan-
dard algorithm applied to the ant problem gives a likelihood of success of 15% for
a computing time ranging between 48 and 50% of the slowest test. For the sake
of readability, we plotted only the tests that give the best probability of success
for each model (Classical GP, Divide & Conquer, Divide & Conquer naive).

It appears clearly that D&C (FS) maximizes the probability of success for a
given computational cost. It is interesting to note that, in the symbolic regression
problem, D&C (FS) reaches its upper bound very quickly, that is, not only
this method provides the best probability of success, it also reaches its best
performance much faster (more than 10 times) than the two other best methods.

One can also note that for all the methods, increasing the number of gener-
ations and thus the computing time does not bring a significant improvement.
Thus, for the problems considered our experiments confirm the fact that long
runs are not useful.
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5 Conclusions and Future Work

In this paper we introduced a new search strategy for the genetic programming
in order to maximize the probability of success with a smaller amount of compu-
tational resources. The Divide & Conquer strategy offers a new way to manage
the evolutionary process through two keys ideas.

Firstly, we use the concept of demes built on subsets of functions and terminals
in order to maximize the coverage of the search space. In this way, each deme
works on a region of the original search space.

Secondly, we decompose the evolutionary process in two distinct levels of
research. With this approach, the higher level combines the best partial solutions
found by the lower level. In doing so, our model has clearly demonstrated its
efficiency on the proposed problems, and the results show that the probability
of success is improved for a reduced computational cost.

Future works for the Divide & Conquer strategy will investigate the efficiency
of the model on others problems in order to determine automatically whether the
reduction and differentiation function should be applied either on the functions
set, or on the terminals set, or on both, according to the characteristics of the
problem.

We work also on an extended version of the algorithm described in Section 2
which might be applied recursively within each deme. In this case, the reduction
and differentiation function will operate on the subset RDSS associated with
each deme.
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