
A Tool for Registering and Replaying
Web Navigation

Alberto Bartoli
DI3 - University of Trieste, Italy
email: bartoli.alberto@units.it

Eric Medvet
DI3 - University of Trieste, Italy

email: emedvet@units.it

Marco Mauri
DI3 - University of Trieste, Italy
email: marco.mauri@phd.units.it

Abstract—Web-based applications have an ever increasing im-
pact on modern society. Organizations spend an ever increasing
amount of resources developing and maintaining web applications
that are in fact their public face. Hence, each problem that an
external user encounters using these products—either due to an
external attack or a simple defect in the underlying code—often
results in a loss for the organization itself. In order to reduce
defects and prevent attacks web applications require a thorough
testing. Unfortunately, nowadays testing a web application is a
very complicated issue, primarily due to the vast use of AJAX
technologies. To simplify and improve the testing procedures, we
propose a method to register and replay web navigation, i.e.,
sequences of user’s interactions with web applications. Then, we
developed a tool that implements this method and tested it on
various web applications, both real and synthetic, obtaining very
positive results.

Index Terms—Web 2.0, Testing, Web navigation, JavaScript.

I. INTRODUCTION

A complete testing is fundamental to develop and maintain
web application but this task is made extremely complicated
by the absence of testing tool both easy to use and capable to
interact with modern, AJAX based, web applications.

Thus we decided to focus this article on both increasing
the easiness of web application testing and finding a way to
describe the interactions of AJAX based web applications.

We developed a method to register and replay sequences of
user’s interactions, called traces, with web applications with
the following properties:

• the creation of a trace is completely automatic;
• no necessity to instrument the monitored web server;
• the replay algorithm is resilient to DOM variance.
This method aids web application testing in two ways: (i) it

can easily navigate the browser to the page that is being tested
even if it is deeply nested in the web application structure and
requires login and (ii) it can also be used as a simple way to
test that the modification being done to the web applications
does not alter its structure in unexpected ways.

The innovative aspect of this method is the simultaneous
presence of all of these three properties, as none of the cited
works possesses all of them.

In particular, [1] describes a method that allows the reg-
istration and replay of traces of web application navigations.
However, contrarily to our works, the registration of the trace
is not automatic, but require manual marking of each event.

Similar methods are presented in [2], [3], but they cannot
register events generated within HTML documents conforming

to the last version of the HTML DOM specification, as they
are limited to the so called version 0. For example, many of
the buttons that compose the graphic interface of the iGoogle
web application use the DOM 2 features to handle user events,
so the approach taken by [2], [3] cannot register any event
associated to those buttons, while the method described in this
article can register those events. Furthermore, [2] is unable to
create trace that spans over multiple pages.

Finally, another aspect of particular relevance of our work
is the capability to cope with file uploads, which is a feature
that is lacking from all of the cited works.

II. ARCHITECTURE

Our system consists of two separate applications: the trace
recorder, that registers the actions executed by the user in
a browsing session, and the trace replayer, that replays a
browsing session previously registered by the trace recorder.

The trace recorder consists of (i) a web application that we
developed and that we call GWT observer, (ii) a preconfigured
proxy and (iii) an instrumented browser. An overview of the
trace recorder is plot in Fig. 1. The GWT observer is composed
of a client-side code (Observer-C), which is executed within
the browser and registers the user’s actions, and a server-side
code (Observer-S), which actually generates the traces. The
proxy is placed in between the instrumented browser and the
target web site and is configured to injects the Observer-C
code into every HTML document sent to the browser. Hence,
the user’s actions can be registered transparently to the target
site.

Observer-C is able to register all the events related to keys
struck, mouse clicks, choice selection from a drop down list
and the text typing into a form field.

Browser Monitored Web
Application

Observer-S

ProxyBrowser
extension

TracesSnapshots

HTML Page

Observer-C
HTML Page

Figure 1. Trace Recorder logical architecture

International Conference on Information Society (i-Society 2012)

978-1-908320-05/6/$25.00©2012 IEEE 509

The trace replayer reads the trace created by the trace
recorder and then replay the registered actions using a instru-
mented version of the Mozilla Firefox web browser.

A trace contains a sequence of event descriptions. An event
description consists of (i) the event type, (ii) the time at which
the event occurred (timestamp) and (iii) the description of the
target element of the event.

To properly replay the trace we introduced the concepts of
relevant and unrelevant events. A relevant event is an event
whose replay is essential to properly replay the entire trace. An
unrelevant event is an event whose replay does not influence
the final outcome of the replay of the trace. An event can
be marked as relevant or unrelevant only upon the complete
registration of the trace: thus, the trace recorder registers all
events. The replay of unrelevant events is counter-productive,
because it could slow down the replay of the whole trace.

An example of unrelevant events are those generated to
select a text field inside a form, because the subsequent event
of typing inside that field implies the selection of the text field
itself.

We consider as relevant all the events of related to mouse
clicks and double clicks and keys struck.

The trace replayer preprocess the trace by filtering out
unrelevant event and sorting the remaining events into a single
sequence S according to their timestamp.

III. TRACE REPLAY

The replay of the trace is performed by the trace replayer
which drives a real browser (Mozilla Firefox) through a freely
available tool (Webdriver).

The algorithm used to replay the trace is the following. For
each event E in the sequence S, the trace replayer searches the
current web document for the associated target element TE ; if
found, replays the event using TE as target using WebDriver. If
not found, the trace replayer repeats the search a fixed number
of times, waiting half second between every repetition. The
rationale of this procedure is in that the searched element could
be generated later by a JavaScript code executed by the web
application. If even after repeating the search multiple times
the corresponding element is not found, the trace replayer
aborts the replay and notifies the error.

When all the events of S have been correctly replayed, the
trace replayer notifies the user of the positive outcome.

IV. TARGET ELEMENT SEARCH ALGORITHM

The search of the correct target element is a fundamental,
yet complex procedure. On one hand, in the vast majority of
cases the element to search for is not marked with an unique
identifier. On the other hand, there are often significant differ-
ences between the web document as seen in the registration
phase and in the replay phase.

For these reasons, we designed a series of heuristics to find
the correct target element for an event. We designed three
heuristic tailored respectively to find media element, form
inputs, generic textual content. Furthermore, we designed a
fourth generic heuristic which is valid for all the other cases.

We have not created a labeled dataset to quantitatively
evaluate specifically the performance of our heuristics. Yet,
we performed a set of experiments on real and complex web
applications and found that the heuristics did not generate any
false positive nor any false negative—i.e., they did not find
any element that was not the one seen during the registration.

V. EXPERIMENTS

In order to test our proposed method and tool, we performed
a series of experiments on various web applications: each
experiment consisted in the registration of a trace and in
multiple replay of such trace to verify the repeatability of the
replay.

We experimented on the following modern web applica-
tions:

• Amazon
• Facebook
• Google Groups
• Stack Overflow
• WackoPicko
• WIVET

The last two web applications are designed specifically as a
testing ground for security scanner tools and crawler respec-
tively.

We could correctly register and replay all of these traces.
On the contrary, the other cited works could not. In particular,
[2] could not register any of these web applications because
they all spans over multiple pages; [3] could not register any
trace on Google Groups because this web application makes
large use of the DOM 2 technology.

VI. CONCLUSIONS

This paper presents a novel method and a tool to create and
replay sequences of user’s interactions with web applications.
The tool is easy to use and works with real and complex web
applications, whereas preexisting similar tools do not.

This method is useful to improve web application testing
by reducing the time needed to thoroughly test the web
application. Finally, it does not require to instrument the web
application by building specific and complex tools.

REFERENCES

[1] P. Montoto, A. Pan, J. Raposo, F. Bellas, and J. López, “Automating
navigation sequences in ajax websites,” in Web Engineering, ser.
Lecture Notes in Computer Science, M. Gaedke, M. Grossniklaus,
and O. Dı́az, Eds. Springer Berlin / Heidelberg, 2009, vol.
5648, pp. 166–180, 10.1007/978-3-642-02818-2 12. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02818-2 12

[2] K. Pattabiraman and B. Zorn, “Dodom: Leveraging dom invariants for
web 2.0 application robustness testing,” in Proceedings of the 2010 IEEE
21st International Symposium on Software Reliability Engineering, ser.
ISSRE ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
191–200. [Online]. Available: http://dx.doi.org/10.1109/ISSRE.2010.17

[3] M. Álvarez, A. Pan, J. Raposo, and J. Hidalgo, “Crawling web
pages with support for client-side dynamism,” in Advances in Web-Age
Information Management, ser. Lecture Notes in Computer Science,
J. Yu, M. Kitsuregawa, and H. Leong, Eds. Springer Berlin /
Heidelberg, 2006, vol. 4016, pp. 252–262, 10.1007/11775300 22.
[Online]. Available: http://dx.doi.org/10.1007/11775300 22

International Conference on Information Society (i-Society 2012)

978-1-908320-05/6/$25.00©2012 IEEE 510

