Back To The Basics: Security of Software Downloads
for Smart Objects

Alberto Bartoli
University of Trieste
Trieste, Italy
bartoli.alberto@units.it

Andrea De Lorenzo
University of Trieste
Trieste, Italy
andrea.delorenzo@units.it

ABSTRACT

Smart objects will soon pervade our homes, cities, factories,
plants, and hospitals and this fact will introduce widespread
important risks for the society as a whole, due to unavoid-
able security vulnerabilities of those objects. The problem of
updating the software of smart objects in order to fix vulner-
abilities will thus become of crucial importance. In this work
we investigate the security of current software download
environments for smart objects. This investigation allows
gaining important insights into the security awareness of or-
ganizations that distribute software across the web and, more
broadly, on their readiness to take control of our everyday
life.

CCS CONCEPTS

« Security and privacy — Vulnerability management; Net-
work security; « Social and professional topics — Mal-
ware / spyware crime;

KEYWORDS

Internet of things, software updates, network attacks

ACM Reference Format:

Alberto Bartoli, Eric Medvet, Andrea De Lorenzo, and Fabiano
Tarlao. 2018. Back To The Basics: Security of Software Downloads
for Smart Objects. In International Conference on Smart Objects
and Technologies for Social Good (Goodtechs ’18), November 28-30,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Goodtechs ’18, November 28-30, 2018, Bologna, Italy

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6581-9/18/11...$15.00
https://doi.org/10.1145/3284869.3284885

Eric Medvet
University of Trieste
Trieste, Italy
emedvet@units.it

Fabiano Tarlao
University of Trieste
Trieste, Italy
ftarlao@units.it

2018, Bologna, Italy. ACM, New York, NY, USA, 6 pages. https:
//dOi.Org/IOAI145/3284869.3284885

1 INTRODUCTION

Internet of things, smart objects, distributed sensing are en-
abling radically new applications and introducing unprece-
dented opportunities in a number of different application
domains. Security researchers and practitioners are looking
at these technologies from a different point of view, though,
which can be expressed very simply and succintly with the
so-called Hypponen’s Law: “Whenever an appliance is de-
scribed as being smart, it is vulnerable.” [17]. There are already
countless examples of smart objects that can be completely
controlled by a remote attacker easily, because of design or
implementation mistakes (i.e., vulnerabilities) in those ob-
jects: light bulbs [20], water heaters [15], dishwashers [10],
sex toys [7], pacemakers [29], door locks [32], cars [6, 25]
just to mention a few of them.

The security problems of smart objects will not disappear
any time soon, due to a combination of technical, economic,
and regulatory issues [3]. The potential risks for the society
as a whole in a not too far future can thus be imagined easily.
Once homes, cities, factories, plants, and hospitals will be
full of network-connected objects capable of acting not only
on data but also on the physical world, any vulnerability
in those objects will constitute a potential entry point for
attackers that can be located anywhere in the world, ranging
from vandals, to terrorist groups, to state actors.

While coping with these problems is very difficult and we
are only starting to understand their ramifications [28], there
is one single technical fact on which virtually all security
researchers and practitioners agree: the fundamental impor-
tance of updating the software [3]. A smart object whose
software is not, or cannot be, updated is a very dangerous
device: in the event a remotely exploitable vulnerability is
found, that object will become a permanent entry point for
an attacker. The experience has amply demonstrated that

https://doi.org/10.1145/3284869.3284885
https://doi.org/10.1145/3284869.3284885
https://doi.org/10.1145/3284869.3284885

Goodtechs *18, November 28-30, 2018, Bologna, Italy

virtually every device will fall into that category, sooner or
later.

Updating the software is a difficult problem in general and
may be even more difficult for smart objects, leaving aside
that many such objects are not designed for allowing their
software to be updated. Assuming that, in a hopefully not
too distant future, the availability of software updates for
smart objects will be the norm, the problem will become how
to transfer such software securely across the web.

This problem is a very important one: an entire society
pervaded by smart objects and that routinely downloads soft-
ware from the web is a very attractive target for a terrorist
group or a state actor capable of posing as a network attacker.
Since the basic web protocol (HTTP) does not provide any
guarantee of server authentication and message integrity, a
network attacker may have an easy job of replacing the real
executable with a malicious one. Indeed, network attacks
on HTTP transactions can be executed so easily that many
organizations are now promoting usage of HTTPS (HTTP
over an encrypted channel providing guarantees of authenti-
cation, integrity, and secrecy) by default [8, 14, 27]. Although
HTTPS does not neutralize network attackers completely,
its usage make those attacks much more difficult and more
costly, especially if attempted on a large scale.

In this work we investigate a very specific but fundamen-
tal question: is software actually distributed securely over
HTTPS, or is it distributed insecurely over HTTP? We are
not aware of any similar study. This investigation allows
gaining important insights into the security awareness of
organizations that distribute software across the web and,
more broadly, on their readiness to take control of our homes,
cities, plants, hospitals, and so on.

One of the key reasons that triggered our interest in the
research presented in this work was the observation that
several web sites, including high-profile ones, distribute soft-
ware on HTTPS, but serve the web page for choosing the
software of interest on HTTP. In other words, the web site is
concerned with network attacks (because the download link
is on HTTPS); yet the web site is concerned with network
attacks only on the download link but not on the download
page (because this page is on HTTP). This defensive ap-
proach is clearly very odd: a network attacker capable of
attacking either authentication or integrity of the software
download is obviously capable of executing such an attack
on the download page as well [26]. It is thus trivial for the
network attacker to force the browser, for example, to down-
load an executable from an attacker-controlled URL different
from the genuine executable URL. In other words, ensuring
authentication and integrity of the executable but not of
the page from which the link to the executable is obtained,
makes very little sense and, unfortunately, many web sites
take exactly this approach.

A. Bartoli, E. Medvet, A. De Lorenzo, F. Tarlao

2 THREAT MODEL

We consider attackers whose goal is to alter the software
downloaded by users from the web. To this end, we assume
the attacker may passively observe network traffic between
the browser and the web server, as well as modify the traffic
sent by the server. In particular, the attacker may modify
the links contained in a web page fetched through HTTP
as well as the file transported by an HTTP response [26].
Such actions are sufficient for delivering an attacker-chosen
software to the user platform.

We assume that the authenticity and integrity of the down-
loaded software is not verified. This assumption does not
hold for several widely diffused systems, e.g., the Windows
operating system, the Chrome browser, apps downloaded
from stores of major operating systems for mobile platforms.
On the other hand, such an assumption is realistic in many
cases, in particular, for software meant to be executed on a
small appliance or smart object. Of course, if a device has
the ability to verify the authenticity and integrity of the
downloaded software, and this ability is configured and used
correctly, then the device will refuse to install the attacker-
controlled software. We note, however, that there are many
ways for an attacker to circumvent such defense [18].

We assume that attackers cannot corrupt or control the
user platform! or the server infrastructure. We also assume
that attackers cannot break HTTPS, thus HTTPS commu-
nication is guaranteed to have secrecy, integrity and server
authentication guarantees. In the following we shall refer to
attackers as network attackers.

Attacks in our threat model can be executed on a local
scale easily, for example, with a fraudulent Wi-Fi access
point or by taking control of an home router. There is plenty
of evidence of such attacks executed on a global scale as
well, though, for surveillance purposes [12] or for injecting
scripts to be executed on browsers [2, 11]. Such attacks may
be executed, for example, with vantage points on Internet
providers or by injecting fake routing messages in the BGP
routing system. Attacks of this sort are feasible by state-level
actors but are believed to be feasible by criminal groups as
well, as indicated by recent cryptocurrency frauds based on
fake BGP routing messages [16, 24]. We remark that attacks
of this sort are particularly dangerous as they cannot be
detected with monitoring infrastructures aimed at assessing
the server reputation [1, 13, 19] or at detecting anomalies in
the content of the website [4, 5, 9].

The only analysis similar to ours that we are aware of,
was concerned with the security of login pages in the most
visited web sites according to the Alexa ranking [31]. The
cited study considered network attackers even stronger than

10f course, attackers could take control of the user platform after an attacker-
chosen software is installed.

Security of Software Downloads for Smart Objects

Table 1: Resource download configuration and corre-
sponding security levels (see text).

Configuration Security Level
HTTP only Insecure
HTTPS only Secure

HTTPS,HTTP redirected to HTTPS ~ Partly Secure
HTTP, HTTPS Partly Secure
Executables not publicly available Unknown

ours, i.e., with the ability to break HTTPS communication
based on fake HTTPS certificates obtained from a certifica-
tion authority trusted by user platforms. We observe that
the potential risks involved in altering a downloaded soft-
ware are arguably much deeper than those associated with
credential stealing.

3 METHODOLOGY AND DATA SELECTION

We analyzed almost 200 web-based software download envi-
ronments, i.e., of web sites that allow downloading an exe-
cutable resource. An executable resource (an executable, in
brief) models the software or a software upgrade for a smart
object, i.e., a file that can be executed on a suitable plat-
form: a driver, a firmware, a development environment, or
an upgrade for any of them.

The crucial element for characterizing the security of a
download environment is the protocol for downloading the
download page and the protocol for downloading the exe-
cutable. As it turned out from our analysis, there are sev-
eral possibilities for each of the two cases as summarized
in Table 1 (we use the generic term “resource” for indicat-
ing either the download page or the executable). The most
secure configuration is HTTPS only and we chose to label
this configuration as “Secure”. Configuration HT TP only can
be attacked by a network attacker easily. Configurations in
which the resource can be accessed via HTTP, either directly
or after an automatic redirection to HTTPS, are equivalent
to HTTPS only when the user follows an HTTPS link, while
they are equivalent to HTTP only when the user follows
an HTTP link. Whether a user will follow an HTTP or an
HTTPS link depends on how the user obtains the link, e.g.,
through the result page of a web search engine, or by typing
directly the URL in a browser, or by following a link in a
(potentially malicious) email, for example. Thus, we chose
to label these configurations as “Partly Secure”.

For several download environments we could not find any
download page, which may correspond to very different se-
curity approaches. On the one extreme, the manufacturer
could not have any plan for distributing software updates.

Goodtechs 18, November 28-30, 2018, Bologna, Italy

While this choice makes the security of the software down-
load protocol irrelevant, this is clearly the worst possible
choice for the security of the corresponding smart object. On
the other extreme, the manufacturer could distribute soft-
ware updates through channels different from the web and
arguably more secure, e.g., automatic device update (as done
by NEST thermostats), updates executed in a tightly con-
trolled environment (as in the case of pacemakers), updates
distributed through memory supports sent via surface mail).
Thus, we chose to label the security level of this configuration
as “Unknown”.

Clearly, the most secure architecture for a download en-
vironment is the one in which both the download page and
the executable are configured as HTTPS only. Any other ar-
chitecture provides little protection, if any, in the considered
threat model: a network attacker capable of attacking ei-
ther authentication or integrity of an HTTP transaction may
easily redirect the browser toward an attacker-controlled
URL, thereby delivering on the client platform an attacker-
chosen executable—an event that may have catastrophic con-
sequences. In particular, an architecture with HTTP down-
load page and HTTPS executable provides a false sense of
protection and very little security, as the network attacker
may forge the content of the download page.

We executed our data collection in May 2018. We ana-
lyzed 194 download environments of 163 different brands,
grouped in several macro-category of devices (Table 2). In or-
der to select those download environments, we constructed
a variety of search queries, inserted those queries in a web
search engine, considered the first result pages, identified
links to sites of official manufacturers, and, finally, navigated
within those sites interactively for identifying the download
environment and compiling its description. We constructed
search queries attempting to emulate the behavior of a per-
son looking for a software related to a specific device model
or to a specific brand. We chose the device models and brands
with several different procedures, each tailored to a device
macro-category.

For smart meters (energy and gas), we constructed several
preliminary search queries by mixing “gas smart meter” or
“energy smart meter” with the names of major gas and energy
providers in Italy, while for energy meter, we constructed
the search query “contatori energia elettrica certificati” (i.e.,
“certified electricity meter” expressed in Italian). We submit-
ted all these preliminary queries to a web search engine.
Then, we identified from the results lists of devices certified
for residential use in Italy and collected the corresponding
devices model names and company brands. Finally, we con-
structed several search queries composed by the brand of
the product, followed by its model name, followed by several

» G

combinations of the terms “software”, “firmware”, “driver”,

Goodtechs *18, November 28-30, 2018, Bologna, Italy

A. Bartoli, E. Medvet, A. De Lorenzo, F. Tarlao

Table 2: Dataset description and resource download configuration. Column “Env” contains the number of down-
load environments and the number of environments that do not distribute executable resources. Columns “Se-

» «

cure”, ” <

Partly Secure”,

» &

Insecure”,

Unknown” are in the format download pages - executable resource. Column

H — S counts configurations with a path from an HTTP download page to an HTTPS executable, while S — H
counts configurations with a path from an HTTPS download page to an HTTP executable.

Category Brands Env. Secure Partly Secure Insecure Unknown H—>S S—H
Smart meters (energy) 8 10-5 0-0 5-5 0-0 0-0 1 4
Smart meters (gas) 8 8-6 0-0 1-1 1-1 0-0 0 1
Webcam 11 17-0 0-1 12 -12 4-3 1-1 5 7
IP cameras (outdoor) 6 9-0 0-0 7-4 2-5 0-0 2 7
IP cameras (consumer) 11 12-0 0-0 3-2 6-7 3-3 0 3
IP cameras (best) 15 16 -7 0-0 6-5 2-3 1-1 1 10
Electronics 38 52-7 0-1 28 - 24 12-14 5-6 14 20
Telecoms 4 4-1 0-0 2-1 0-1 1-1 0 1
Network (consumer) 8 10-0 0-0 7-5 3-4 0-1 1 5
Network (enterprise) 13 14-0 0-0 12-10 2-4 0-0 3 8
Energy meter 9 9-5 0-0 3-3 1-1 0-0 2 4
Smart thermostat 7 7-3 0-0 0-0 2-0 2-2 0 0
Industrial thermostat 2 2-1 0-0 1-1 0-0 0-0 1 2
ICS firmware 23 24-0 1-0 17 -13 6-10 0-1 6 9
TOTAL 163 194 - 35 1-2 104 - 86 41-55 13-16 36 81
TOTAL (percentage) 0.6%-13% 65.4%-54.1% 25.8% -34.6% 8.2%-10.1% 33.3% 63.3%

“upgrade” and of the terms “download”, “install”. For Elec-
tronics/Telecommunications, we considered the Wikipedia
list of largest manufacturing companies by revenue and se-
lected the top-ranked companies in sectors “electronics” and
‘telecommunications”, respectively. For each company brand
in these categories, we executed the same procedure as above
(except that we omitted the model name from search queries).

We executed the same procedure as above for several other
device macro-categories, with the only difference that we
executed search queries for collecting product names and
company brands on Amazon rather than on a web search
engine. We omit the terms used in the queries for space
constraints.

We considered only download environments hosted on
web sites of official manufacturers in order to assess the se-
curity awareness of the manufacturer itself. We compiled
only one download environment for each manufacturer and
associated that environment with the first search query pro-
cedure with which it was found. We compiled multiple down-
load environments for a given manufacturer only when we
found multiple official support sites for that manufacturer.

We compiled each download environment description
manually. We considered the possibility of implementing
an automated tool for extracting the required information
from the web and compiling each description automatically
(similarly to [31]), but rejected this option because of the

extremely broad variety in structure and content of relevant
sites and, in particular, because of the widely differing web
technologies (often quite old) used by the manufacturers
involved in our analysis.

For each download environment, we categorized the down-
load page and the executable resources according to the se-
curity levels in Table 1. A download page usually links to
several executable resources, sometimes with different se-
curity levels. We categorized the executable resources of a
download environment with the lowest security level found
in that environment. Several download environments dis-
tribute only technical or marketing documentation, i.e., no
executable resources. Such documentation could be used
by a network attacker for injecting malware, but the cor-
responding issues are very different from the focus of our
study. Thus, we chose to not categorize these environments.

4 RESULTS

Table 2 summarizes the dataset composition and the corre-
sponding download configurations observed. The results are
not very encouraging: we could find only 1 download page
that can be accessed only through HTTPS and 41 download
pages that can be accessed only through HTTP, correspond-
ing to 0.6% and 25.8% of the analyzed download environ-
ments. It follows that a network attacker may easily drive
users to an attacker-controlled URL, thereby fooling users to

Security of Software Downloads for Smart Objects

download a malicious executable, for 25.8% of the analyzed
download environments. Concerning the remaining down-
load pages (65.4%), the attacker may or may not succeed in
his malicious intent depending on whether the user happens
to follow an HTTP or an HTTPS link to the download page.
The results for executable resources are even worse than
those for download pages: there is a small increase in se-
cure configurations (1.3% vs 0.6%) but also a much greater
increase in the insecure ones (34.6% vs. 25.8%).

Column H — S contains a count of configurations with a
path from an HTTP download page to an HTTPS executable
resource. As pointed out in the introduction, such configu-
rations provide very little protection and, most importantly,
give users a false sense of security. It can be seen that 36
download environments, corresponding to 33.3% of those
that allow downloading an executable resources with HTTPS,
fall in this category. Similar considerations can be made for
paths from an HTTPS download page to an HT TP executable
resource (column H — S, percentage with respect to We
foundResults for The

Further important insights on the security of download
pages that can be accessed through HTTPS, and perhaps
most importantly on the security awareness of the corre-
sponding manufacturers, can be obtained by looking at the
strict transport security (HSTS) policy of the download page.
Such a policy is an optional security enhancement specified
by a web application through a dedicated HTTP response
header. When a supported browser receives this header, that
browser will prevent any communications to that web appli-
cation from being sent over HTTP and will instead send all
communications over HTTPS. A network attacker will thus
be unable to attack HTTP transactions with the download
page because the browser will only execute HT'TPS transac-
tions, even when following HTTP links (of course, provided
the browser has contacted the genuine web application in
the past and received the corresponding policy).

For each download page accessible through HTTPS, we
have checked whether the corresponding download environ-
ment specifies an HSTS policy and summarized the results in
Table 3.1t can be seen that only 25% of the analyzed download
environments specify an HSTS policy, thus the remaining
75% of them do not take advantage of such important defense.
We remark that the set of download pages accessible through
HTTPS is essentially the same as the set of Partly Secure
download pages, hence for 75% of those pages an attacker
may attack HTTP transactions.

Another important defense mechanism for download pages
that can be accessed through HTTPS is the “upgrade insecure
requests” directive, which is part of another optional security
enhancement specified by a web application through a ded-
icated HTTP response header. When a supported browser
receives this directive, the browser will behave as described

Goodtechs 18, November 28-30, 2018, Bologna, Italy

Table 3: Strict Transport Security for HTTPS down-
load pages

Category HSTS No HSTS

IS
w

Smart meters (energy)
Smart meters (gas)
Webcam

IP cameras (outdoor)
IP cameras (consumer)
IP cameras (best)
Electronics

Telecoms

Network (consumer)
Network (enterprise)
Energy meter

Smart thermostat
Industrial thermostat
ICS firmware

TOTAL 32 94
TOTAL (percentage) 25% 75%

O W T W

AR O O O WO R OB OO IO
[\
=~

above for the HSTS, that is, it will treat HT TP links to the web
application as if those links were HTTPS. We have checked,
for each download page accessible through HTTPS, whether
the corresponding download environment specifies an “up-
grade insecure requests” directive. Only 2 download envi-
ronments exhibit this behavior, one in IP cameras (best) and
the other in ICS firmware. Both environments specify also
an HSTS policy and belong to the Partly Secure category.

5 CONCLUDING REMARKS AND FUTURE WORK

The problem of distributing software updates for smart ob-
jects securely will soon become a crucial issue for the society
as a whole. While large software companies are generally
aware of the relevance of this problem and have developed
robust infrastructures for distributing software updates au-
tomatically and on a large scale, companies whose core busi-
ness is different from software will have to develop their
own solutions. A fundamental step in this direction is ac-
knowledging the relevance of the problem and acquiring
the necessary security awareness. Our analysis has allowed
gaining important insights in this respect and, we believe, it
is fair to claim that the current situation is not very encour-
aging. We have analyzed many download environments for
software to be executed on resource-constrained appliances
and the software distributed by most of those environments
may be altered by network attackers easily, with techniques
available not only to state actors but also to criminal organi-
zations.

Goodtechs *18, November 28-30, 2018, Bologna, Italy

We plan to broaden our analysis on a much larger scale,
by attempting to uncover possible correlations between the
security of a software download environment and the men-
tions of the corresponding organization on various forms
of media, including financial news, security news and alike.
We plan to investigate such possible links based on unsu-
pervised analysis of unstructured news sources [21-23, 30].
We believe such analysis may allow gaining insights into
the incentives shaping the security attitude of smart object
manufacturers.

REFERENCES

[1] [n. d.]. Google Safe Browsing. https://safebrowsing.google.com/.
Accessed: 2018-8-18.

[2] Nate Anderson. 2013. How a banner ad for H&R Block appeared on
apple.com—without Apple’s OK. https://arstechnica.com/tech-policy/
2013/04/how-a-banner-ad-for-hs-ok/. Accessed: 2018-8-18.

[3] Ross Anderson. 2018. Making Security Sustainable. Commun. ACM
61, 3 (Feb. 2018), 24-26.

[4] Alberto Bartoli, Giorgio Davanzo, and Eric Medvet. 2009. The reaction
time to web site defacements. IEEE Internet Computing 13, 4 (2009).

[5] Kevin Borgolte, Christopher Kruegel, and Giovanni Vigna. 2015.
Meerkat: Detecting Website Defacements through Image-based Object
Recognition.. In USENIX Security Symposium. 595-610.

[6] Russell Brandom. 2015. New vulnerability lets attackers hijack
Chrysler vehicles remotely. https://www.theverge.com/2015/7/21/
9009213/chrysler-uconnect-vulnerability-car-hijack. Accessed: 2018-
8-18.

[7] Matt Burgess. [n. d.]. Smart dildos and vibrators keep getting hacked
- but Tor could be the answer to safer connected sex. https://www.
wired.co.uk/article/sex-toy-bluetooth-hacks-security-fix. Accessed:
2018-8-18.

[8] Kate Conger. 2016. Apple will require HTTPS connections for iOS
apps by the end of 2016. TechCrunch (June 2016).

[9] Giorgio Davanzo, Eric Medvet, and Alberto Bartoli. 2011. Anomaly
detection techniques for a web defacement monitoring service. Expert
Systems with Applications 38, 10 (2011), 12521-12530.

[10] Lorenzo Franceschi-Bicchierai. 2017. A Hackable Dish-
washer Is Connecting Hospitals to the Internet of
Shit. https://motherboard.vice.com/en_us/article/pg9qkv/

a-hackable-dishwasher-is- connecting-hospitals- to- the-internet- of-shit.
Accessed: 2018-8-19.

Nakibly Gabi, Schcolnik Jaime, and Rubin Yossi. 2016. Website-
Targeted False Content Injection by Network Operators. In USENLX
Security Symposium.

Ryan Gallagher and Glenn Greenwald. 2014. How the NSA Plans to
Infect ‘Millions’ of Computers with Malware. https://theintercept.com/
2014/03/12/nsa-plans-infect-millions-computers-malware/. Accessed:
2018-8-18.

Sujata Garera, Niels Provos, Monica Chew, and Aviel D Rubin. 2007.
A framework for detection and measurement of phishing attacks. In
Proceedings of the 2007 ACM workshop on Recurring malcode. ACM,

[11

—

[12

—

[13

=

1-8.
[14] Google. 2018. Protecting users with TLS by default in An-
droid P. https://android-developers.googleblog.com/2018/04/

protecting-users-with-tls-by-default-in html. Accessed: 2018-4-12.
Andy Greenberg, Emily Dreyfuss, Brian Barrett, Danny Gold, Issie
Lapowsky, and Lily Hay Newman. 2018. How Hacked Water Heaters

(15

=

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

A. Bartoli, E. Medvet, A. De Lorenzo, F. Tarlao

Could Trigger Mass Blackouts. Wired (Aug. 2018).
Andy Greenberg, Lily Hay Newman, Emily Dreyfuss, Brian Barrett,

Danny Gold, and Issie Lapowsky. 2014. Hacker Redirects Traffic From
19 Internet Providers to Steal Bitcoins. Wired (Aug. 2014).

Mikko Hypponen and Linus Nyman. 2017. The Internet of (Vulnerable)
Things: On Hypponen’s Law, Security Engineering, and IoT Legislation.
Technology Innovation Management Review (April 2017).

Doowon Kim, Bum Jun Kwon, and Tudor Dumitras. 2017. Certified
Malware: Measuring Breaches of Trust in the Windows Code-Signing
PKI. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 1435-1448.

Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker.
2011. Learning to detect malicious urls. ACM Transactions on Intelligent
Systems and Technology (TIST) 2, 3 (2011), 30.

John Markoff. 2016. Why Light Bulbs May Be the Next Hacker Target.
The New York Times (Nov. 2016).

Eric Medvet, Alberto Bartoli, Giorgio Davanzo, and Andrea De Lorenzo.
2011. Automatic face annotation in news images by mining the web.
In Proceedings of the 2011 IEEE/WIC/ACM International Conferences
on Web Intelligence and Intelligent Agent Technology-Volume 01. IEEE
Computer Society, 47-54.

Eric Medvet, Alberto Bartoli, and Giulio Piccinin. 2014. Publication
venue recommendation based on paper abstract. In Tools with Artificial
Intelligence (ICTAI), 2014 IEEE 26th International Conference on. IEEE,
1004-1010.

Youssef Meguebli, Mouna Kacimi, Bich-Lién Doan, and Fabrice
Popineau. 2014. Unsupervised Approach for Identifying Users’ Political
Orientations. In ECIR.

Shaun Nichols. 2018. AWS DNS network hijack turns MyEtherWallet
into ThievesEtherWallet. https://www.theregister.co.uk/2018/04/24/
myetherwallet_dns_hijack/. Accessed: 2018-8-18.

Charlie Osborne. 2018. Over a dozen vulnerabilities uncov-
ered in BMW vehicles | ZDNet. https://www.zdnet.com/article/
over-a-dozen-vulnerabilities-uncovered-in-bmw-vehicles/. Accessed:
2018-8-18.

Marco Prandini, Marco Ramilli, Walter Cerroni, and Franco Callegati.
2010. Splitting the HTTPS Stream to Attack Secure Web Connections.
IEEE Security and Privacy 8, 6 (Nov. 2010), 80-84. https://doi.org/10.
1109/MSP.2010.190

Emily Schechter. 2018. A milestone for Chrome security: marking
HTTP as “not secure”. https://www.blog.google/products/chrome/
milestone-chrome-security-marking-http-not-secure/. Accessed:
2018-8-18.

Fred B Schneider. 2018. Impediments with Policy Interventions to
Foster Cybersecurity. Commun. ACM 61, 3 (Feb. 2018), 36-38.

Ms Smith. 2017. 465,000 Abbott pacemak-
ers vulnerable to hacking, need a firmware fix.
https://www.csoonline.com/article/3222068/hacking/
465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.
html. Accessed: 2018-8-18.

Monica Chiarini Tremblay, Carlos Parra, and Arturo Castellanos. 2015.
Analyzing Corporate Social Responsibility Reports Using Unsuper-
vised and Supervised Text Data Mining. In International Conference on
Design Science Research in Information Systems. Springer, 439-446.
Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld. 2017.
Measuring Login Webpage Security. In Proceedings of the Symposium
on Applied Computing (SAC °17). ACM, New York, NY, USA, 1753-1760.
Josephine Wolff. 2017. The Ransomware Attack That Locked
Hotel Guests Out of Their Rooms. http://www.slate.com/articles/
technology/future_tense/2017/02/the_ransomware_attack_that_
locked_hotel_guests_out_of_their_rooms.html. Accessed: 2018-8-18.

https://safebrowsing.google.com/
https://arstechnica.com/tech-policy/2013/04/how-a-banner-ad-for-hs-ok/
https://arstechnica.com/tech-policy/2013/04/how-a-banner-ad-for-hs-ok/
https://www.theverge.com/2015/7/21/9009213/chrysler-uconnect-vulnerability-car-hijack
https://www.theverge.com/2015/7/21/9009213/chrysler-uconnect-vulnerability-car-hijack
https://www.wired.co.uk/article/sex-toy-bluetooth-hacks-security-fix
https://www.wired.co.uk/article/sex-toy-bluetooth-hacks-security-fix
https://motherboard.vice.com/en_us/article/pg9qkv/a-hackable-dishwasher-is-connecting-hospitals-to-the-internet-of-shit
https://motherboard.vice.com/en_us/article/pg9qkv/a-hackable-dishwasher-is-connecting-hospitals-to-the-internet-of-shit
https://theintercept.com/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://theintercept.com/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://android-developers.googleblog.com/2018/04/protecting-users-with-tls-by-default-in.html
https://android-developers.googleblog.com/2018/04/protecting-users-with-tls-by-default-in.html
https://www.theregister.co.uk/2018/04/24/myetherwallet_dns_hijack/
https://www.theregister.co.uk/2018/04/24/myetherwallet_dns_hijack/
https://www.zdnet.com/article/over-a-dozen-vulnerabilities-uncovered-in-bmw-vehicles/
https://www.zdnet.com/article/over-a-dozen-vulnerabilities-uncovered-in-bmw-vehicles/
https://doi.org/10.1109/MSP.2010.190
https://doi.org/10.1109/MSP.2010.190
https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/
https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html
http://www.slate.com/articles/technology/future_tense/2017/02/the_ransomware_attack_that_locked_hotel_guests_out_of_their_rooms.html
http://www.slate.com/articles/technology/future_tense/2017/02/the_ransomware_attack_that_locked_hotel_guests_out_of_their_rooms.html
http://www.slate.com/articles/technology/future_tense/2017/02/the_ransomware_attack_that_locked_hotel_guests_out_of_their_rooms.html

	Abstract
	1 Introduction
	2 Threat model
	3 Methodology and data selection
	4 Results
	5 Concluding remarks and future work
	References

