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ABSTRACT
We consider acooperative multi-agentsystem in which cooperation
may be enforced by communication between agents but in which
agents mustlearn to communicate. The system consists of a game
in which agents may move in a 2D world and are given the task of
reaching specified targets. Each agent knows the target of another
agent but not its own, thus the only way to solve the task is for the
agents to guide one another using communication and, in particular,
by learning how to communicate. We cast this game in terms of a
partially observed Markov game and show that agents may learn
policies for moving and communicating in the form of a neural
network by means ofreinforcement learning. We investigate in
depth the impact on the learning quality of theexpressivenessof the
language, which is a function of vocabulary size, number of agents
and number of targets.
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1 INTRODUCTION
Artificial intelligence nowadays plays an increasingly pervasive
role in everyday life and what was only a research topic a few years
ago is now an essential part of the technology industry [18]. An
important goal in this scenario consists in the creation of artificial
agents able to solve complex problems requiring forms of perception
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of the surrounding environment. Multi-agent systems, in particular,
involve many artificial agents interacting in the same environment
with common and/or conflicting goals, resulting in cooperative
and/or competitive scenarios.

For example, the controller of an autonomous vehicle can be
modeled as a multi-agent system of sensors and actuators that work
together, so that collective performance depends on the coopera-
tion among all of them. The cooperation involves the exchange of
information between agents along with the evaluation of the action
to take, based on the received information.

Language interpretability and efficiency are important require-
ments in this context. Natural language has the advantage of being
understandable by humans, but its complexity and the fact that
the meaning of a term may depend on the context in which it ap-
pears (i.e., on nearby terms) may nullify the potential benefits of
the learning process [19].

A symbol-based language, with no predefined meaning for sym-
bols, is not easily interpretable by humans, but could lead to more
efficient cooperation among artificial agents and could be more
appropriate for a learning task than natural language.

Motivated by recent works on multi-agent systems [13, 14], we
consider asymbol-basedapproach to solve a cooperative multi-
agent task in which agents learn to communicate usingreinforce-
ment learning(RL). We consider a multi-agent scenario in which
agents may move in a 2D world and are given the task of reaching
specified targets. Each agent knows the target of another agent but
not its own, thus the only way to solve the task is for the agents
to guide one another using communication and, in particular, by
learning how to communicate.

We use the Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) learning algorithm [13] for learning the control policy
of the agents in a fully decentralized way. We focus on investigating
the relation between vocabulary size (number of communication
symbols available), number of agents, and number of possible tar-
gets. To this end, we define a singleexpressivenessnumerical index
that depends on these quantities and investigate its effect on the
degree of accomplishment of the cooperative task at the end of the
learning process.

Given an instance of the problem, with a fixed number of agents
and targets, we find a vocabulary size that leads to best rewards
w.r.t. the number of agents and targets. We compare these results
to two baselines that model the two extreme scenarios: one in
which agents cannot communicate and another in which agents
have a predefined ability to communicate. Finally we show that, if
expressiveness is beyond a certain threshold, the learning process
struggles to learn how to communicate and, consequently, performs
poorly.
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2 RELATED WORK
Our work concerns the language used for communication among
agents in a cooperative scenario where the learning of agent con-
trollers is tackled with RL. In the following sections, we briefly
survey relevant previous studies related this scenario.

In particular, we focus on language and communication in multi-
agent systems (Section 2.1) and on RL as tool for training the agent
controllers in these settings (Section 2.2). Indeed, most of the cited
works involve both aspects. We decide to present each work in the
section related to the work most relevant part of the contribution.

It is worth to note that our work somewhat investigates the
broader field studying how the (natural) language has evolved. The
reader may find in [4] a comprehensive analysis of that field.

2.1 Language and communication
In many works the agents are viewed as a complex adaptive sys-
tem which collectively solves the problem of developing a shared
communication model [17]. To do so, the community must reach
an agreement on a repertoire of forms, of meanings, and of form-
meaning pairs (the lexicon and grammar). In general, this task may
be hard: the authors of [10] discuss the learning bottleneck and its
relation with the phrase structure and, more broadly, with language
compositionality.

In the communication-oriented multi-agent scenario of [8], the
authors implement the agents through recurrent neural networks,
allowing language compositionality and variability. Their focus
is on the development of natural language, and the results are
obtained by fixing the vocabulary size to an arbitrary value. The
works cited above are based on language compositionality and
grammar complexity, an aspect we do not deal with.

In [20] the authors train a robotic agent controlled by a recur-
rent neural network to learn the relationship between sequences of
words and corresponding actions. They consider a symbol-based
language in which every word is encoded as one-hot vector and visu-
alize the agent internal representation of the state after the training.
In the cited work there is no multi-agent interaction, as in our work,
but a single agent model is trained to learn sentence-action asso-
ciations. Moreover, rather than focusing on expressiveness, [20]
assesses the quality of the learning w.r.t. the presence of specific
logical expression in the uttered word sequences.

In [1] the authors claim that language is a mechanism that
emerges for coordinating the solution of complex tasks among
agents. In [2] the same authors show that different level of “friend-
ship” between agents co-evolve with a system of linguistic conven-
tions: agents decisions during individual interactions influence the
overall social structure of the population. Both works consider a
tool, calledLanguage Evolution Workbench(LEW), which defines
the task, the scenario, and the learning procedure. Based on sim-
ulations using LEW, they study the impact of the probability of
communication success on the task achievement: moreover, they
characterize the former in terms of lexicon size and amount of lexi-
con actually used. This analysis is similar to the one we do, even if
the scenario and the task are different.

2.2 Reinforcement learning for agent
controllers

RL has reached outstanding results in single-agent control do-
main [6] and several recent works have extended this approach to
the training of cooperative multi-agent systems, also when commu-
nication among agents plays a role [17]. In [17] and in [8] commu-
nication is enforced in a referential game between two cooperating
agents: one agent goal is to explain which image the other agent
should select from a pool of images.

In [7] the authors investigate the process of learning to communi-
cate and how this occurs among agents. To this extent they propose
two multi-agent frameworks for communicative tasks based on
reinforcement learning.

The focus of [16] is on the meaning-word association in a popu-
lation of autonomous real robots. The robots play a guessing game
in which one has to communicate the other that he identified an
object, acquired through a camera. The works cited above use RL
to learn the agent controllers, including the communication part,
but focus on different scenarios: in particular, they deal with cases
where the communication involves two agents.

Recently, another RL variant tailored to communication-based
tasks has been presented in [3]. The authors propose to approximate
the reward function, used to assess the agent behaviour, with a
discriminator neural network trained on a data set of states. In this
way, the representation of the solved task is separated from how to
solve it. This approach has been showed to outperform vanilla RL
on a range of tasks, and combines RL with supervised learning.

Another fully decentralized multi-agent RL approach for commu-
nication-based tasks has been proposed by [5]. The cited work
shows that agents may indeed learn to communicate without any
prior information. Agents learn a low-level wireless protocol with
bidirectional communication. As in our work, the authors also
provide baselines for both transmitter and receiver, and they learn
only one of the two. Training quality is assessed with varying levels
of noise in the communication channel.

The approach that we use for training the agents is Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) [13], a multi-agent
variation of deterministic policy gradient [15]. The cited work
shown that MADDPG fits several different RL scenarios, and pro-
posed its application in many cooperative and competitive multi-
agent settings.

In [14] and [8] the authors present multi-agent scenarios with
communication, in which an end-to-end differentiable model is
trained through backpropagation. In particular in [8] this type of
learning is compared with standard RL.

We consider a scenario similar to the one in [14], in which agents
move in a 2D word and communicate using symbol-based language
and agent controllers are implemented by neural networks. In the
cited work, the authors consider an end-to-end differentiable ap-
proach for training: they assume differentiable system dynamics,
so that the networks can be updated back-propagating an arbitrary
reward scalar. This work is different from our work in terms of
learning approach. Also the cited work does not evaluate the im-
pact of expressiveness on the training results, focusing instead on
analyzing the actual number of words emitted by the agents with
varying vocabulary size.
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A mixed cooperative-competitive scenario has been studied
by [11], where two opposing agents have to negotiate a deal, in
order to maximize their opposite goals. The two agents use natural
language for the communication and the baseline for the training
is supervised learning using a data set of dialogues on negotiation
tasks. The agents are then trained from this baseline by using RL
and self-play. Again we do not use supervised learning, nor natural
language, and the agents in our work play a cooperative game,
instead of competing against each other.

3 BACKGROUND
3.1 Markov game
We consider a multi-agent version of a Markov Decision Process
(MDP), calledpartially observed Markov game[12] (or, here briefly,
Markov game), in which a number ofagentsinteract in the same
discrete-time environment.

A Markov game involvingn agents is described by a tuple(S,ϕ, ρ,
O,A,Ω,Π,R), whereS is the set of possiblestatesof the game,ϕ
is the stochasticstate transition function, ρ is the stochasticinitial
state function,O = (O1, . . . ,On ) is the set of agent-dependentobser-
vations sets,A = (A1, . . . ,An ) is the set of agent-dependentactions
sets, Ω = (ω1, . . . ,ωn ) is the set of agent-dependent stochasticob-
servation functions, Π = (π1, . . . ,πn ) is the set of agent-dependent
stochasticpolicies, andR = (r1, . . . , rn ) is the set of agent-dependent
reward functions.

The state transition functionϕ : S × S ×A1 × · · · ×An 7→ [0, 1]
stochastically determines the evolution of the game, i.e.,ϕ(s ′ |s,a1,
. . . ,an ) is the probability that the game goes from states to states ′
given that the agents performed the actionsa1, . . . ,an . It holds that
∀s ∈ S,∀(a1, . . . ,an ) ∈ A1×· · ·×An :

∑
s ′∈S ϕ(s

′ |s,a1, . . . ,an ) = 1.
The initial state functionρ : S 7→ [0, 1] stochastically determines

the initial state of the game, i.e.,ρ(s) is the probability that the game
starts from the states. It holds that

∑
s ∈S ρ(s) = 1.

Each observation functionωi : Oi × S × Ai 7→ [0, 1] stochasti-
cally determines the observation of the corresponding agent, i.e.,
ωi (o |s,a) is the probability that theith agent observes the obser-
vationo ∈ Oi , given that it performed the actiona ∈ Ai with the
game being in states. It holds that∀i ∈ {1, . . . ,n},∀s ∈ S,∀a ∈
Ai :

∑
o∈Oi ωi (o |s,a) = 1.

Each policyπi : Oi ×Ai 7→ [0, 1] stochastically determines the
behavior of the corresponding agent, i.e.,πi (a |o) is the probability
that theith agent performs the actiona ∈ Ai given that it observed
the observationo ∈ Oi . It holds that∀i ∈ {1, . . . ,n},∀o ∈ Oi :∑
a∈Ai πi (a |o) = 1.
Each reward functionri : S ×Ai 7→ R determines the reward an

agent receives, i.e.,ri (s,a) is the reward theith agent receives for
having performed the actiona ∈ Ai with the game in states ∈ S.

3.2 Policy learning
Letγ ∈ [0, 1] be a predefined constant calleddiscount factorand let
T be a predefined time length called thetime horizon. Thepolicy
learning problemconsists in finding, givenS,O,A,R andγ ,T , the
optimal policiesΠ⋆ which maximize the expectationE[r̄ t0 ], of the

overall reward̄r t0 for any t0, defined as

r̄ t0 =
∑

i ∈{1, ...,n }

t=t0+T∑
t=t0

γ t ri (s
t ,ati ) (1)

wherest is the state of the game at thet th step andati is the
action performed by theith agent at thet th step. Parametersγ
andT specify to which degree the agents employing the optimal
policiesΠ⋆ act towards an immediate reward (shortT , smallγ ) or
a future reward (longT ,γ ≈ 1).

It can be noted that the state transition functionϕ, the initial state
function ρ, and the observation functionsΩ are not available in the
policy learning problem. Instead, it is possible to sample the corre-
sponding distribution by playing the game as many times as needed.
That is, given a policies setΠ, it is possible to play the game for a
finite number Tepisodeof time steps (i.e., anepisode) and obtaining
the corresponding values ofst ,oti ,a

t
i for t ∈ {0, . . . ,Tepisode}—and,

as a consequence, the rewardsri (s
t ,ati ) for t ∈ {0, . . . ,Tepisode}

and the overall rewards̄r t for t ∈ {0, . . . ,Tepisode−T }.
In many cases of interest, the policies to be learned have all

the same form (e.g., a neural network) which can be modeled by
a finite set θ of numericalpolicy parameters. In those cases, the
policy learning problem consists in learning the optimal values
Θ⋆ = {θ⋆1 , . . . ,θ

⋆
n } of the policy parameters.

The policy learning problem can be solved using RL, a form of
machine learning which tries to balance exploration (i.e., sampling
ϕ, ρ, andΩ) and exploitation (i.e., maximizing the overall rewards
r̄ ) while searching in the space of the policy parameters by varying
Θ. In this work, we use a RL technique called Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) [13] which has been
shown to be effective for scenarios similar to the one considered in
this work.

4 THE COOPERATIVE UNKNOWN TARGET
GAME

We consider a cooperative game similar to the one presented in [14],
which we call theCooperative Unknown Target(CUT) game. The
game is based on 2D world in whichnr robots move and com-
municate. The goal of each robot is to reach one amongnt target
positions in the world, the association between robot and target be-
ing statically determined before the game starts. Each robot knows
the target of one robot butnot its own target. It is guaranteed that
the target of each robot is known to exactly one robot. Robots com-
municate by sending and receiving symbols of a finite alphabetW
(the language). At each time step, a robot broadcasts exactly one
symbol: each sent symbol is received by every robot and the sender
is known to the receivers. Robots are stateless: in particular, they
do not remember the symbols they received before the current time
step.

Communication among robots is thus essential for allowing each
robot to reach its own target, which characterizes the CUT game as
a cooperative one. The game is challenging because a robot should
learn to: (i) move toward its target, to be deduced from what it
hears; (ii) broadcast a symbol describing the single robot-target
association that it knows.
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The CUT game can be modeled as a Markov game. In the follow-
ing sections, we detail how the CUT game maps to the Markov game
abstraction and which is the form we chose for the corresponding
policies, that we then learned using MADDPG. As anticipated in
Section 1, the aim of the present paper is to investigate the impact
of the language size on the effectiveness and efficiency of the policy
learning; we do not insist on discussing the optimality of the game
mapping, nor on thoroughly evaluating the MADDPG performance
on the CUT game.

4.1 The CUT game as a Markov game
The key idea behind the mapping of the CUT game to the Markov
game abstraction is to represent each robot in the former as two
separate agents in the latter: one (themovement-agent) determines
the movements of the robot, the other (thecommunication-agent)
determines the output communication of (i.e., the symbols sent by)
the robot. The motivation for this choice is to allow for the decou-
pling of the two different goals of the robot: (i) moving towards its
target and (ii) communicating the known robot-target association.
In particular, the two corresponding reward functions can be hence
defined to reflect the two goals.

More in detail, the state of the CUT game encodes:
• the positions®xr,1, . . . , ®xr,nr of thenr robots, with ®xr,i ∈ R2

for eachi;
• the speeds®v1, . . . , ®vnr of the nr robots, with ®vi ∈ R2 for

eachi;
• the positions®xt,1, . . . , ®xt,nt of the nt targets, with ®xt,i ∈
[0, 1]2 for eachi;
• the robot-target associations(τr,1,τt,1), . . . , (τr,nr ,τt,nt )

known by each robot, withτr,i ∈ {1, . . . ,nr } and τt,i ∈
{1, . . . ,nt } for eachi;
• the symbolsw1, . . . ,wnr sent bynr robots at the previous

time step, withwi ∈W ∪∅ for eachi.
All the robots in the CUT game can move and communicate in the

same way. LetAmove = {↑,→,↓,←,∅} be the set containing the
actions which can be performed by the movement-agent of a robot.
Values ofAmove represent the changes of speed in the direction,
while∅ representing the null change. LetAcomm=W ∪∅ be the set
containing the symbols which can be sent by the communication-
agent of a robot,∅ representing no sent symbol.

The mapping between the CUT game and the tuple(S,ϕ, ρ,O,A,
Ω,Π,R) defining a Markov game is as follows. The setA of ac-
tion sets of the Markov game is composed ofnr copies ofAmove

andnr copies ofAcomm. Similarly, the setO of observation sets
of the Markov game is composed ofnr copies of the setOmove=
R2×· · ·×R2×W ∪∅×· · ·×W ∪∅, whereR2 is repeatednt times and
W ∪∅ is repeatednr times, andnr copies ofOcomm= {1, . . . ,nr }×
{1, . . . ,nt }. The semantics of the two setsOmove,Ocomm is ex-
plained below in terms of the observation functionsΩ.

The initial state functionρ of the Markov game sets the state
variables®xr,i , ®xt,i randomly in [0, 1]2, (τr,i ,τt,i ) randomly in the
corresponding domains,®vi = (0, 0), andwi = ∅, for eachi (we
do not formalize this function for the sake of brevity). Concerning
the robot-target associations(τr,i ,τt,i ), ρ ensures that (i) no robots
know their robot-association and (ii) each robot-target association is
known by at least one robot, i.e.,∀i,τr,i , i and∀i,∃!j , i : τr, j = i.

The state transition functionϕ of the Markov game is not actu-
ally stochastic (we do not formalize this function for the sake of
brevity). It updates the state variables corresponding to the robot
positions®xr,i according to the actions performed by the correspond-
ing movement-agents and updates the state variableswi according
to the symbols sent by the communication-agents. The other state
variables are never affected, i.e., targets do not move and robot-
target associations do not change. Concerning robot positions,®xr,i
becomes®xr,i + ®vi and ®vi becomes®vi + ∆®v with ∆®v being(−δ , 0),
(0,δ ), (δ , 0), (0,−δ ), (0, 0) for, respectively,↑,→,↓,←,∅. Parameter
δ represents the robots acceleration.

The observation functions of the Markov game are not actually
stochastic and depend only on the state (not on the performed
action). We denote the state withs. For movement-agents,ωmove

i :
S 7→ Omove gives the offset of theith agent from each target along
the two axes (a pair of values inR for each target) and the symbols
emitted at the previous step by each agent (one symbol inW ∪∅):

ωmove
i (s) = (®xt,1 − ®xr,i , . . . , ®xt,nt − ®xr,i ,w1, . . . ,wnr ) (2)

For communication-agents,ωcomm
i : S 7→ Ocomm gives the robot-

target association known to theith robot:

ωcomm
i (s) = (τr,i ,τt,i ) (3)

The robot-target associationsτr,i ,τt,i never change, thus every
communication-agent observes a constant observation during the
game.

Finally, the reward functions of the Markov game are defined so
as to capture the goal of the CUT game. For the movement-agents,
rmove
i rewards the agent when it is able to get closer to its target. For

communication-agents,rcomm
i rewards theiagent when it is able to

make its “recipient” jth to get closer to its target, withj = τr,i . In
detail,rmove

i : S 7→ R gives the opposite of the Manhattan distance
(i.e., the closer, the greater the reward) of the correspondingith
robot from its target:

rmove
i (s) =

j=nr∑
j=1
−d1(®xr,i , ®xt,τt, j )1i (s, j) (4)

where:

1i (s, j) =

{
1 if τr, j = i
0 otherwise

(5)

The reward functionrcomm
i : S 7→ R gives the opposite of the

Manhattan distance of the robot whose target association is known
to the ith robot from its target:

rcomm
i (s) = −d1(®xr,τr ,i , ®xt,τt,i ) (6)

Both reward functions depend only on the state (not on the per-
formed action) and are deterministic.

4.2 Policies form
We consider policies in the form of a neural network, thus the
policy learning problem consists in learning the optimal values
Θ⋆ = {θ⋆1 , . . . ,θ

⋆
n } of the parameters of the network. We opted

for a Multi-Layer Perceptron (MLP) as the form of the policies for
the movement- and communication-agents, which can hence be
denoted asπmove

θi
: Omove 7→ Amoveandπcomm

θi
: Ocomm 7→ Acomm,

respectively. We chose to use the same MLP topology for all the
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movement-agents policies and the same MLP topology for all the
communication-agents policies.

The input ofπmove
θi

consists of a tuple of2nt + nr elements, as
defined in Section 4.1. The first2nt elements are the offset of theith
agent from each target along the two axes; each of these elements
is mapped to the input layer directly. The remainingnr elements
are the symbols emitted at the previous step by each agent (i.e., one
symbol inW ∪∅); each of these elements is represented in one-hot
encoding, thus each of these elements correspond to|W | + 1 input
values. The resulting size for the input layer will be2nt +nr (|W |+1).
The output ofπmove

θi
is an element ofAmove (Section 4.1). This

element is represented in one-hot encoding, thereby resulting in
|Amove| = 5 output neurons.

The input ofπcomm
θi

consists of a pair of elements corresponding
to the robot-target association known to theith agentτr,i ,τt,i , as
defined in Section 4.1. Both elements are represented in one-hot
encoding, resulting innr + nt input values. The output ofπcomm

θi
is an element ofAcomm = W ∪ ∅ (Section 4.1). This element is
mapped to|W | + 1 output neurons with one-hot encoding.

For both the policies, we set2 fully connected hidden layers,
each with64 neurons, and we used the Rectifier Linear Unit (ReLU)
activation function as done in [13]. Finally, the policies output are
sampled from the Gumbel-Softmax distribution [9] which makes
the policies actually stochastic: this, in turn, allows for a better
exploration of the search space while learning the policies with
MADDPG.

4.3 Hand-made communication-agents policies
In order to allow for a more insightful investigation of the impact
of the language size on the policy learning effectiveness and ef-
ficiency, we designed two communication-agents policies to use
as baselines. The two policies represent two extreme cases, one
of non-communicating agents and one of agents which optimally
communicate with a language of predefined size.

The first hand-made policy, which we denote withNoComm, is
defined by:

πcomm
NoComm(τr,i ,τt,i ) = ∅ (7)

Note that, since the output ofπcomm
NoComm is always∅, this policy

works with anyW : in particular, it works withW = ∅.
The second hand-made policy, which we denote withOpt, is

defined by:
πcomm

Opt (τr,i ,τt,i ) = w
Opt
τr ,i ,τt,i (8)

wherewOpt
τr ,i ,τt,i is a symbol of a languageWOpt that can express

all the possible robot-agent associations. That is, inWOpt each
robot-agent association is unequivocally encoded by one symbol:
WOpt = {wi, j , i ∈ {1, . . . ,nr }, j ∈ {1, . . . ,nt }}.

5 EXPERIMENTAL EVALUATION
5.1 Procedure
We emphasize that each agent learns to communicate and to un-
derstand the received symbols independently of the other agents.
Thus, a given symbol could be associated with different meanings
by the communication-agent policyπcomm

θi
of different agents. It

is thus important to gain insights into the relation between the

Table 1: Parameters.

Parameter Value

P
ol

.l
. Discount factorγ 0.95

Time horizonT 25
Episode time stepsTepisode 25

C
U

T Number of robotsnr ∈ {2, 3, 4}
Number of targetsnt ∈ {2, 3, 4}
Language size|W | ∈ {0, . . . , 4nrnt }

M
A

D
D

P
G Batch size 512

Replay memory size 106

Optimizer Adam
Learning rate 10−2

Gradient norm clipping 0.5

number of symbols available for communication|W |, the number
of robotsnr , and the number of targetsnt .

In order to decouple the experimental findings from the size of
the policy learning problem (i.e., the numbernr of robots and the
numbernt of targets), we define theexpressivenessof the language
ase = |W |

nrnt . Others may define expressiveness in different ways,
for instance as the number of times symbols have been uttered. We
investigated the impact of expressiveness on thee and efficiency of
the policy learning in the CUT problem.

We performed policy learning of bothπmove andπcomm for a
number of different combinations of(nr ,nt , |W |) corresponding to
e ∈ [0, 4], as follows. We considered all combinations of(nr ,nt ) ∈
{2, 3, 4} × {2, 3, 4}; for each such combination we considered all
values for|W | ∈ {0, . . . , 4nrnt }.

For each combination of(nr ,nt , |W |), we executed an experiment
consisting of20 000 learning episodes followed by the evaluation
of the resulting policies for100 validation episodes. The learning
parameters are listed in table 1.

For the baseline policies we performed policy learning only
for the agent movement policyπmove

θi
, because agent communica-

tion policiesπcomm
NoCommandπcomm

Opt were specified in advance. We
considered all combinations of(nr ,nt ) ∈ {2, 3, 4} × {2, 3, 4}, each
combination with a single value for|W |, as follows. Withπcomm

NoComm
the language isW = ∅, thus |W | = e = 0. With πcomm

Opt the language
size is|W | = nrnt , thus the expressiveness ise = 1.

5.2 Results and discussion: effectiveness
In this section we assess the effectiveness of the policy learning
in all the problem settings of the experimental campaign. To this
end, we computed thevalidation rewardRval for each experiment,
defined as the average overall reward of the agents on the validation
episodes. Figure 1 shows the normalized validation reward averaged
across all the experiments—i.e., for each(nr ,nt ) the values ofRval
for different e are adjusted to have null mean and standard deviation
equal to1.

The most important finding is that the highest validation reward
corresponds to values ofe close to1, i.e., when|W | is close to
nrnt . On the other hand, whene ≫ 1 the action space grows
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Figure 1: Normalized validation reward Rval vs. the expres-
sivenesse, average across all the experiments.

unnecessarily and the learning process is negatively affected. In
principle, one could try to tackle the growth of the action space by
increasing the size of the MLP: we did not perform any experiments
to investigate this opportunity.

Figure 1 also shows that the validation reward withe = 0 is poor.
This is not surprising, because when the language does not allow
to communicate, an agent does not have any information about
its target, thus the learned policy can only tend to minimize the
distance between a robot and all targets. In summary, this figure
shows that the policy learning process is indeed effective in learning
how to communicate, in order to solve the specific cooperative task.
Furthermore, it shows that the policy learning is most effective
when the size of the language is sufficiently large to (potentially)
allow associating approximately one symbol with each possible
robot-target association.

Figure 2 provides the relation between validation reward and ex-
pressiveness in a more granular form. The figure contains a curve
for each pair(nr ,nt ) considered (in each curve, the number of
symbols|W | varies so as to span the interval[0, 4] for the expres-
siveness). The validation reward forπcomm

Opt is represented by a dot
lying at e = 1.

The impact of expressiveness on validation reward is more ev-
ident for larger values ofnr andnt : it can be seen that the upper
lines (corresponding to lower values ofnr andnt ) tend to exhibit a
constant validation reward, except for very low values of expres-
siveness, while the bottom lines show a degrading behavior when
expressiveness grows. It can also be seen that the gap between
πcomm

Opt and the learned policies is higher for larger values ofnr and
nt .

Further insights on the relation between validation reward and
expressiveness can be obtained from Table 2 and Figure 3. In partic-
ular, Table 2 shows that whene is sufficiently large (i.e., when|W |
is at least equal tonrnt ) Rval is higher ifnt is low and viceversa.
This result confirms the intuition that cooperating toward reaching
less targets is easier than toward reaching more targets. On the
other hand, when the language is not expressive enough (i.e., when
e is too small), the resulting behavior is unpredictable in the sense
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Figure 2: Validation reward Rval of the learned policies and
of the Opt baseline vs. the expressiveness e.

that there is no intuitive relationship betweennrnt andRval. Inter-
estingly, though, Figure 3 shows that there is significant variability
in the outcome of policy learning, more so when expressiveness is
large: the first quartile of the distribution fore = 3.0 spans nearly
the same range of values as the whole distribution.

Table 2: Validation reward for selected values of expressive-
ness.

e = 0.25 e = 1.0 e = 3.0

nr nt µ σ µ σ µ σ

2
2 −37.84 0.10 −13.80 0.02 −13.03 0.02
3 −40.89 0.12 −15.48 0.03 −14.78 0.03
4 −28.80 0.03 −16.02 0.02 −15.47 0.02

3
2 −53.87 0.17 −24.92 0.08 −26.84 0.04
3 −36.75 0.12 −30.32 0.05 −32.48 0.23
4 −47.66 0.10 −41.72 0.10 −45.34 0.15

4
2 −51.85 0.08 −47.31 0.12 −53.56 0.12
3 −65.58 0.08 −63.20 0.08 −72.10 0.20
4 −74.47 0.39 −82.20 0.20 −88.40 0.09

5.3 Results and discussion: efficiency
In this section we assess the efficiency of the policy learning. To
this end, we computed the average episode reward (thelearning
rewardRlearn) every512 episodes of the learning process.
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Figure 3: Boxplot of the normalized validation reward Rval
for selected values of expressiveness e.

Figure 4 shows howRlearn changes during the learning for3
combinations ofnr ,nt (one for each plot). For each combination
we considered3 values for expressiveness and the baseline policies.

With nr = nt = 2, all policies reach the respective maximal
learning reward relatively quickly, thus very efficiently. It can also
be observed a sharp separation between two groups of policies,
one includingπcomm

NoCommand the learned policy withe = 0.25 and
another including all the other policies. Withnr = nt = 3, the base-
line policies exhibit the same efficiency as in the previous scenario,
while the learned policies require more episodes to converge to
their maximal learning reward. The fact that the baseline policies
converge more quickly may be explained with the fact that these
policies have to learn only a movement policy. Interestingly, in
this case the learned policies always exhibit a learning reward in
between the two baselines. Withnr = nt = 4, on the other hand,
πcomm

Opt is much slower for reaching its maximal learning reward,
while all the other policies converge more quickly. We interpret
this result as a combination of the larger size of the search space
coupled with the ability ofπcomm

Opt to indeed cope with such a larger
space better than the other policies, i.e., still being able to learn.

Table 3 shows similar information of Figure 3 for all the experi-
ments. For each combination ofnr ,nt and each value ofe in a set
of three selected values (and each of the two baselines), the table
shows the number of episodes (in thousands) the learning took to
reach95% of the final value of the learning rewardRlearn.

6 CONCLUDING REMARKS
We considered a cooperative multi-agent system in which commu-
nication between agents is required for accomplishing the task but
in which agents must learn to communicate. Specifically, each agent
must learn its target from what it hears, learn to move toward that
target, and learn to broadcast information useful to other agents.
We have considered a symbol-based language and investigated the
impact of the expressiveness of the language, which is a function of
vocabulary size, number of agents, and number of targets, on both
effectiveness and efficiency of the learning process. We have shown
that agents including two separate neural networks, one for encod-
ing a movement policy and another for encoding a communication
policy, may indeed learn policies for moving and communicating
by means of reinforcement learning. We have also shown that the

Table 3: Number of episodes (103) required for reaching 95%
of the final learning reward.

Baseline e

nr nt NoComm Opt 0.25 1 3

2
2 2 3 2 3 4
3 3 3 16 6 8
4 3 5 13 6 8

3
2 2 3 6 6 6
3 3 4 12 9 9
4 3 8 11 13 15

4
2 3 3 5 10 9
3 3 10 10 9 13
4 3 14 12 16 3

best effectiveness is obtained when the vocabulary size is close to
the product between number of agents and number of targets: a
smaller vocabulary is not expressive enough while a larger vocabu-
lary makes it more difficult to explore the resulting larger search
space.
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