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ABSTRACT

We consider a&ooperative multi-ageistystem in which cooperation
may be enforced by communication between agents but in which
agents mustearn to communicatd he system consists of a game
in which agents may move in a 2D world and are given the task of
reaching speci ed targets. Each agent knows the target of another
agent but not its own, thus the only way to solve the task is for the
agents to guide one another using communication and, in particular,
by learning how to communicate. We cast this game in terms of a
partially observed Markov game and show that agents may learn
policies for moving and communicating in the form of a neural
network by means ofreinforcement learning/Ve investigate in
depth the impact on the learning quality of thexpressivenestthe
language, which is a function of vocabulary size, number of agents
and number of targets.
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of the surrounding environment. Multi-agent systems, in particular,
involve many arti cial agents interacting in the same environment

with common and/or con icting goals, resulting in cooperative

and/or competitive scenarios.

For example, the controller of an autonomous vehicle can be
modeled as a multi-agent system of sensors and actuators that work
together, so that collective performance depends on the coopera-
tion among all of them. The cooperation involves the exchange of
information between agents along with the evaluation of the action
to take, based on the received information.

Language interpretability and e ciency are important require-
ments in this context. Natural language has the advantage of being
understandable by humans, but its complexity and the fact that
the meaning of a term may depend on the context in which it ap-
pears (i.e., on nearby terms) may nullify the potential bene ts of
the learning process [19].

A symbol-based language, with no prede ned meaning for sym-
bols, is not easily interpretable by humans, but could lead to more
e cient cooperation among arti cial agents and could be more
appropriate for a learning task than natural language.

Motivated by recent works on multi-agent system$3 14, we
consider asymbol-basedpproach to solve a cooperative multi-
agent task in which agents learn to communicate usiminforce-
ment learningRL). We consider a multi-agent scenario in which
agents may move in a 2D world and are given the task of reaching
speci ed targets. Each agent knows the target of another agent but
not its own, thus the only way to solve the task is for the agents
to guide one another using communication and, in particular, by
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1 INTRODUCTION

Arti cial intelligence nowadays plays an increasingly pervasive
role in everyday life and what was only a research topic a few years
ago is now an essential part of the technology industrdg. An
important goal in this scenario consists in the creation of arti cial
agents able to solve complex problems requiring forms of perception
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We use the Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) learning algorithm 13 for learning the control policy
of the agents in a fully decentralized way. We focus on investigating
the relation between vocabulary size (number of communication
symbols available), number of agents, and number of possible tar-
gets. To this end, we de ne a singkexpressivenessimerical index
that depends on these quantities and investigate its e ect on the
degree of accomplishment of the cooperative task at the end of the
learning process.

Given an instance of the problem, with a xed number of agents
and targets, we nd a vocabulary size that leads to best rewards
w.r.t. the number of agents and targets. We compare these results
to two baselines that model the two extreme scenarios: one in
which agents cannot communicate and another in which agents
have a prede ned ability to communicate. Finally we show that, if
expressiveness is beyond a certain threshold, the learning process
struggles to learn how to communicate and, consequently, performs
poorly.


https://doi.org/10.1145/3297280.3297368
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2 RELATED WORK 2.2 Reinforcement learning for agent
Our work concerns the language used for communication among controllers

agents in a cooperative scenario where the learning of agent con- RL has reached outstanding results in single-agent control do-
trollers is tackled with RL. In the following sections, we briey  main [6] and several recent works have extended this approach to
survey relevant previous studies related this scenario. the training of cooperative multi-agent systems, also when commu-
In particular, we focus on |anguage and communication in multi- nication among agents p|ays a ro|&'n. In [17_' and in [8] commu-
agent systems (Section 2.1) and on RL as tool for training the agent njcation is enforced in a referential game between two cooperating
controllers in these Settings (SeCtion 22) Indeed, most of the cited agents: one agent goa| isto exp|ain which image the other agent
works involve both aspects. We decide to present each work in the - should select from a pool of images.
section related to the work most relevant part of the contribution. In[7] the authors investigate the process of learning to communi-
It is worth to note that our work somewhat investigates the  cate and how this occurs among agents. To this extent they propose
broader eld studying how the (natural) language has evolved. The  two multi-agent frameworks for communicative tasks based on
reader may nd in [4] a comprehensive analysis of that eld. reinforcement learning.

The focus of L§ is on the meaning-word association in a popu-
lation of autonomous real robots. The robots play a guessing game
in which one has to communicate the other that he identi ed an

2.1 Language and communication object, acquired through a camera. The works cited above use RL

In many works the agents are viewed as a complex adaptive sys- LO Ie}arn the ac?ent controller_s, |_n_clud|n_g tre Cﬁmn;un'fapﬁn part,
tem which collectively solves the problem of developing a shared Putocus on di erent scenarios: in particular, they deal with cases

communication model17. To do so, the community must reach where the communication 'n_VOIVeS_ two agents. L
an agreement on a repertoire of forms, of meanings, and of form- Recently, another RL variant tailored to communication-based

meaning pairs (the lexicon and grammar). In general, this task may (@SS hasbeen presented [ The authors propose to approximate

be hard: the authors off[q] discuss the learning bottleneck and its 11 reward function, used to assess the agent behaviour, with a

relation with the phrase structure and, more broadly, with language discriminator neural _network trained on a c_iata set of states. In this
compositionality. way, the representation of the solved task is separated from how to

In the communication-oriented multi-agent scenario @] the solve it. This approach has bec_en showet_j to outper_form vanil_la RL
authors implement the agents through recurrent neural networks, ona rar;gefo{ltadsks, andl_cor;bln:a_s RL with superwsidf learning.
allowing language compositionality and variability. Their focus ) An_ot %r u 3(; ecintrr;el |zeb multi-agent F;L apprr?ac_ czjrcomlinu-
is on the development of natural language, and the results are nication-based tasks as been propose 5}”_.6 C'te. wor
obtained by xing the vocabulary size to an arbitrary value. The shows that agents may indeed learn to communicate without any

works cited above are based on language compositionality and E_r(ljc_nr |nf_orma|1t|on_ Agents I(_earnz low-level Wlfleﬁs pmty?co' W||th
grammar complexity, an aspect we do not deal with. idirectional communication. As in our work, the authors also

In [20 the authors train a robotic agent controlled by a recur- provide baselines for both transmitter and receiver, and they learn

rent neural network to learn the relationship between sequences of only one of the two. Training quality is assessed with varying levels

words and corresponding actions. They consider a symbol-based of n?]|se in the %or;]munlcatlo? charmel. h . "
language in which every word is encoded as one-hot vector and visu- The approach that we use for training the agents is Multi-Agent

alize the agent internal representation of the state after the training. De«_ap _Determlnlstlc I_Dqllc_y Gra_dlent (MADDPGH’ a m_ultl-agent
In the cited work there is no multi-agent interaction, as in our work, variation of deterministic policy gradlenth. The C.'ted work
but a single agent model is trained to learn sentence-action asso- shown _that MADD_PG_ ts several di eref‘t RL scenarlos, _and pro-
ciations. Moreover, rather than focusing on expressivene2§, [ posed its gppllcatlon in many cooperative and competitive multi-
assesses the quality of the learning w.r.t. the presence of speci c agent settings. . . .
logical expression in the uttered word sequences. In [14] and [8] the authors present multi-agent scenarios with
In [1] the authors claim that language is a mechanism that communication, in which an end-to-end di erentiable model is
emerges for coordinating the solution of complex tasks among trained through backpropagation. In particular irg[ this type of

agents. In P] the same authors show that di erent level of friend- learning is compared with standard RL.

ship between agents co-evolve with a system of linguistic conven- we _con3|der a (sjcen;rlo 5|m|Ia_r tothe one b4, E)n YVS'Ch zg?ents
tions: agents decisions during individual interactions in uence the ~MoV€Ina 2D word and communicate using symbol-based language

overall social structure of the population. Both works consider a a_nd agent controllers are |mp_lemented by neural r_letvvorks. In the
tool, calledLanguage Evolution Workben@tEW), which de nes cited work, thg authors consider an end-Fo-end di erentiable ap-
the task, the scenario, and the learning procedure. Based on sim- Proach for training: they assume di erentiable system dynamics,
ulations using LEW, they study the impact of the probability of so that the networl_<s can b? “Pdated back-propagatlr!g an arbitrary
communication success on the task achievement: moreover, they reward scalar. This work is d'_ erent from our work in terms Of

characterize the former in terms of lexicon size and amount of lexi- learning approach. Also the cited work does not evaluate the im-

con actually used. This analysis is similar to the one we do, even if pact of expressiveness on the training results, focusing instead on
the scenario and the task are di erent analyzing the actual number of words emitted by the agents with

varying vocabulary size.
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A mixed cooperative-competitive scenario has been studied
by [11], where two opposing agents have to negotiate a deal, in
order to maximize their opposite goals. The two agents use natural
language for the communication and the baseline for the training
is supervised learning using a data set of dialogues on negotiation
tasks. The agents are then trained from this baseline by using RL
and self-play. Again we do not use supervised learning, nor natural
language, and the agents in our work play a cooperative game,
instead of competing against each other.

3 BACKGROUND

3.1 Markov game

We consider a multi-agent version of a Markov Decision Process
(MDP), calledpartially observed Markov garmi#Z (or, here brie y,
Markov game), in which a number afgentsnteract in the same
discrete-time environment.

A Markov game involving: agents is described by a tuplg, ¢, p,
0, A, Q, 11, R), whereS is the set of possiblstatesof the gameg
is the stochastistate transition functiarp is the stochastiénitial
state functionO = (01, . .., Op) is the set of agent-dependeanbser-
vations setsA = (Ai, ..., Ay) is the set of agent-dependeanttions
setsQ = (w1, . . ., wp) is the set of agent-dependent stochastig-
servation functiondI = (1, . . ., n,) is the set of agent-dependent
stochastigoliciesandR = (r1, ..., ry) is the set of agent-dependent
reward functions

The state transition functionp : S xS x Ay X -+ X A, — [0, 1]
stochastically determines the evolution of the game, if&s/|s, a1,
...,ay) is the probability that the game goes from stat¢o states’
given that the agents performed the actions, . . ., a,. It holds that
Vs €S, ¥(a1,...,an) € A1 X+ XAp : Ygoes P(s’ls,a1,...,an) = 1.

The initial state functionp : S — [0, 1] stochastically determines
the initial state of the game, i.ep(s) is the probability that the game
starts from the stats. It holds that};;cg p(s) = 1.

Each observation functiomw; : O; x S x A; + [0, 1] stochasti-
cally determines the observation of the corresponding agent, i.e.,
wi(ols, a) is the probability that theith agent observes the obser-
vation o € O;, given that it performed the actiom € A; with the
game being in state. It holds thatVi € {1,...,n},Vs € S,Va €
Ai 1 Yoco,; wilols,a) = 1.

Each policyr; : O; x A; +— [0, 1] stochastically determines the
behavior of the corresponding agent, i.e;(a|o) is the probability
that the ith agent performs the action € A; given that it observed
the observatioro € O;. It holds thatVi € {1,...,n},Yo € O; :
aca, milalo) = 1.

Each reward functiornr; : S x A; — R determines the reward an
agent receives, i.ex;(s, a) is the reward theith agent receives for
having performed the actiom € A; with the game in state € S.

3.2 Palicy learning

Lety € [0, 1] be a prede ned constant callediscount factoand let
T be a prede ned time length called thiéme horizon Thepolicy
learning problenconsists in nding, givens, O, A,R andy, T, the
optimal policiegI* which maximize the expectatioi[r®], of the
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overall reward for any tg, de ned as

t=tg+T
= D vt (1)
ie{l,...,n} t=t

wheres’ is the state of the game at thith step anda is the
action performed by the&th agent at thetth step. Parameterg
andT specify to which degree the agents employing the optimal
policiesIT* act towards an immediate reward (shdft smally) or
a future reward (longdr, y =~ 1).

It can be noted that the state transition functiagh the initial state
function p, and the observation functiong are not available in the
policy learning problem. Instead, it is possible to sample the corre-
sponding distribution by playing the game as many times as needed.
That is, given a policies sdi, it is possible to play the game for a

nite number TepisodeOf time steps (i.e., agpisodeand obtaining
the corresponding values af , 0!, a! for ¢ € {0, ..., Tepisodd and,

as a consequence, the rewarndss’, ) for ¢ € {0, ..., Tepisode

and the overall rewards? for t € {0, ..., Tepisode— T}

In many cases of interest, the policies to be learned have all
the same form (e.g., a neural network) which can be modeled by
a nite set 0 of numericalpolicy parameterdn those cases, the
policy learning problem consists in learning the optimal values
0* = {07F,...,05} of the policy parameters.

The policy learning problem can be solved using RL, a form of
machine learning which tries to balance exploration (i.e., sampling
¢, p, andQ) and exploitation (i.e., maximizing the overall rewards
r) while searching in the space of the policy parameters by varying
0. In this work, we use a RL technique called Multi-Agent Deep
Deterministic Policy Gradient (MADDPG)LP which has been
shown to be e ective for scenarios similar to the one considered in
this work.

4 THE COOPERATIVE UNKNOWN TARGET
GAME

We consider a cooperative game similar to the one presentedh [
which we call theCooperative Unknown Targ€@UT) game. The
game is based on 2D world in which, robots move and com-
municate. The goal of each robot is to reach one amanpgarget
positions in the world, the association between robot and target be-
ing statically determined before the game starts. Each robot knows
the target of one robot buhot its own target. It is guaranteed that
the target of each robot is known to exactly one robot. Robots com-
municate by sending and receiving symbols of a nite alphali#t
(thelanguagé. At each time step, a robot broadcasts exactly one
symbol: each sent symbol is received by every robot and the sender
is known to the receivers. Robots are stateless: in particular, they
do not remember the symbols they received before the current time
step.

Communication among robots is thus essential for allowing each
robot to reach its own target, which characterizes the CUT game as
a cooperative one. The game is challenging because a robot should
learn to: (i) move toward its target, to be deduced from what it
hears; (ii) broadcast a symbol describing the single robot-target
association that it knows.



The CUT game can be modeled as a Markov game. In the follow-
ing sections, we detail how the CUT game maps to the Markov game
abstraction and which is the form we chose for the corresponding
policies, that we then learned using MADDPG. As anticipated in
Section 1, the aim of the present paper is to investigate the impact
of the language size on the e ectiveness and e ciency of the policy
learning; we do not insist on discussing the optimality of the game
mapping, nor on thoroughly evaluating the MADDPG performance
on the CUT game.

4.1 The CUT game as a Markov game

The key idea behind the mapping of the CUT game to the Markov
game abstraction is to represent each robot in the former as two
separate agents in the latter: one (theovement-agehtietermines
the movements of the robot, the other (tldmmunication-ageht
determines the output communication of (i.e., the symbols sent by)
the robot. The motivation for this choice is to allow for the decou-
pling of the two di erent goals of the robot: (i) moving towards its
target and (ii) communicating the known robot-target association.
In particular, the two corresponding reward functions can be hence
de ned to re ect the two goals.

More in detalil, the state of the CUT game encodes:

o the positionsx; 1, . . ., %r., Of the n, robots, with%, ; € R?
for eachi;

¢ the speedsi, ...
eachi;

¢ the positionsx; 1,. .
[0, 1]2 for eachi;

o the robot-target associationg; 1, 7:,1), . . ., (tr,n,, Tt,n, )
known by each robot, withr, ; € {1,...,n,} andr;; €
{1,...,n;} for eachi;

o the symbolswy, ..., w,, sent byn, robots at the previous
time step, withw; € W U & for eachi.

,Tn, Of the n, robots, withd; € R? for

., Xt n, Of the n; targets, withx; ; €

Allthe robots in the CUT game can move and communicate in the
same way. Le™moVe = {1, — | «, @} be the set containing the
actions which can be performed by the movement-agent of a robot.
Values ofA™OV€ represent the changes of speed in the direction,
while @ representing the null change. L&ic°™™ = WU be the set
containing the symbols which can be sent by the communication-
agent of a robotg representing no sent symbol.

The mapping between the CUT game and the tu@gp, p, O, A,

Q, 11, R) de ning a Markov game is as follows. The s&A of ac-
tion sets of the Markov game is composedrmgf copies ofA™Ove
andn, copies ofA°®™M. Similarly, the sel0 of observation sets
of the Markov game is composed af copies of the se©™OVe =
RZx. - -XRZXWU@X- - -xWUD, whereR? is repeated:, times and
WU is repeated:, times, andh, copies of0®©°™M= {1, ..., n,} x
{1,...,n;}. The semantics of the two setgM°V€ OCOMM j5 ex-
plained below in terms of the observation functiogs

The initial state functionp of the Markov game sets the state
variablesx, ;,x; ; randomly in [0, 112, (zr,i, 7¢,i) randomly in the
corresponding domaing;; = (0,0), andw; = &, for eachi (we
do not formalize this function for the sake of brevity). Concerning
the robot-target associationgr., ;, 7;,;), p ensures that (i) no robots
know their robot-association and (ii) each robot-target association is
known by at least one robot, i.evj, 7, ; # iandVi,3lj #i .7 j = i.
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The state transition functiornp of the Markov game is not actu-
ally stochastic (we do not formalize this function for the sake of
brevity). It updates the state variables corresponding to the robot
positionsx, ; according to the actions performed by the correspond-
ing movement-agents and updates the state variablggccording
to the symbols sent by the communication-agents. The other state
variables are never a ected, i.e., targets do not move and robot-
target associations do not change. Concerning robot positiaps,
becomes, ; + ¥; andd; becomes; + AT with AT being(-$,0),
(0,9),(5,0),(0,-6), (0,0) for, respectivelyf, —, |, <, @. Parameter
d represents the robots acceleration.

The observation functions of the Markov game are not actually
stochastic and depend only on the state (not on the performed
action). We denote the state with For movement-agents)"°¢:

S — OMOV€gives the o set of theith agent from each target along
the two axes (a pair of values iR for each target) and the symbols
emitted at the previous step by each agent (one symbadhiru &):

(2
For communication-agents)f°™™: § - 0°°™Mgives the robot-
target association known to théh robot:

w{O™Ms) = (tr i 72,1) (3)

The robot-target associations. ;, 7;,; hever change, thus every
communication-agent observes a constant observation during the
game.

Finally, the reward functions of the Markov game are de ned so
as to capture the goal of the CUT game. For the movement-agents,
ri"®®rewards the agent when itis able to get closer to its target. For
communication-agents;’°™™ rewards theiagent when it is able to
make its recipient jth to get closer to its target, with = 7, ;. In
detail,r"°V¢: S - R gives the opposite of the Manhattan distance
(i.e., the closer, the greater the reward) of the corresponditig
robot from its target:

wz’nove(s) = (ft,l _ir,is ce sgt,nt - fr,i’Wl’ cee ,Wnr)

Jj=nr
rOVs) = > —di(Er it )5, )) @)
=1
where:
1 if Trj =1
1;(s, ) = K 5
i(s.J) {O otherwise ®)

The reward function/f°™" : s — R gives the opposite of the
Manhattan distance of the robot whose target association is known
to the ith robot from its target:

r?omm(s) = _dl(fr,rr,,—’;t, r,,,-) (6)

Both reward functions depend only on the state (not on the per-
formed action) and are deterministic.

4.2 Policies form

We consider policies in the form of a neural network, thus the
policy learning problem consists in learning the optimal values
@* = {0F,...,0} of the parameters of the network. We opted
for a Multi-Layer Perceptron (MLP) as the form of the policies for
the movement- and communication-agents, which can hence be
denoted aﬁ.g]OVE : Omove — Amoveand”gomm : Ocomm — Acomm7

respectively.l We chose to use the same MLP topology for all the



movement-agents policies and the same MLP topology for all the
communication-agents policies.

The input of;rmo"e consists of a tuple o2n; + n, elements, as
de nedin Sectlon 4.1.The rsPn; elements are the o set of théth

agent from each target along the two axes; each of these elements

is mapped to the input layer directly. The remaining elements

are the symbols emitted at the previous step by each agent (i.e., one

symbol inW U @); each of these elements is represented in one-hot
encoding, thus each of these elements corresponghto+ 1 input
values. The resulting size for the input layer will B&a; +n, (|]W|+1).
The output ofnmove is an element ofA™°V€ (Section 4.1). This
elementis represented in one-hot encoding, thereby resulting in
|AMOVE| = 5 output neurons.

The input 0f7r°°mm consists of a pair of elements corresponding
to the robot- target association known to thgh agentz, ;, 7z, as
de ned in Section 4.1. Both elements are represented in one-hot
encoding, resulting im, + n; input values. The output ofzcomm
is an element ofA°®™M = W U & (Section 4.1). This element is
mapped toW| + 1 output neurons with one-hot encoding.

For both the policies, we se& fully connected hidden layers,
each with64 neurons, and we used the Recti er Linear Unit (ReLU)
activation function as done in13. Finally, the policies output are
sampled from the Gumbel-Softmax distributiof] jwhich makes
the policies actually stochastic: this, in turn, allows for a better
exploration of the search space while learning the policies with
MADDPG.

4.3 Hand-made communication-agents policies

In order to allow for a more insightful investigation of the impact
of the language size on the policy learning e ectiveness and ef-
ciency, we designed two communication-agents policies to use

as baselines. The two policies represent two extreme cases, one

of non-communicating agents and one of agents which optimally
communicate with a language of prede ned size.

The rst hand-made policy, which we denote witNoCommis
de ned by:

ﬁ%n(gronmm(fr isTt,i) = (7)

Note that, since the output of[,f‘%rgg‘mmrs always@, this policy
works with any W in particular, it works withw = 0.

The second hand-made policy, which we denote wiipt, is
de ned by:
Opt

ﬁgcr))Itnn](Tr»iv Tti) = Wer i, 8)
Wherewforpit’ft , is a symbol of a languag®’OP! that can express

all the possible robot-agent associations. That istPPt each

robot-agent association is unequivocally encoded by one symbol:

WOP = {w; i€ {L...,n b je{l,...,ne}}.

5 EXPERIMENTAL EVALUATION
5.1 Procedure

We emphasize that each agent learns to communicate and to un-
derstand the received symbols independently of the other agents.

Thus, a given symbol could be associated with di erent meanings
by the communication-agent p0|ICycomm of di erent agents. It
is thus important to gain insights into the relation between the
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Table 1: Parameters.

Parameter Value
—  Discount factory 0.95
E Time horizonT 25
Episode time step&pisode 25
— Number of robots:, €{2,3,4}
8 Number of targets:, €{2,3,4}
Language sizéw| €{0,...,4n;n;}
¢y Batchsize 512
Q. Replay memory size 108
[a) L
A Optimizer Adam
< Leaming rate 102
Gradient norm clipping 0.5

number of symbols available for communicati¢w |, the number
of robotsn,, and the number of targets;.

In order to decouple the experimental ndings from the size of
the policy learning problem (i.e., the numbey of robots and the
numbern, of targets), we de ne theexpressivenee$the language

ase = ‘Wl . Others may de ne expressiveness in di erent ways,
for mstance as the number of times symbols have been uttered. We
investigated the impact of expressiveness on thend e ciency of
the policy learning in the CUT problem.
We performed policy learning of botlr™°V€ and #°™M™M for a
number of di erent combinations ofn,, ns, |[W|) corresponding to

€ [0, 4], as follows. We considered all combinations(ef, n;) €
{2,3,4} x {2,3,4}; for each such combination we considered all
values for|W| € {0,...,4n,n;}.

For each comblnatlon ah,, ns, |W|), we executed an experiment
consisting 0f20 000 learning episodes followed by the evaluation
of the resulting policies fo00 validation episodes. The learning
parameters are listed in table 1.

For the baseline policies we performed policy learning only
for the agent movement pollcytmo"e because agent communica-

tion policies 72T and nc%mmwere speci ed in advance. We

considered all combinations @f,, n;) € {2,3,4} x {2,3,4}, each
combination with a single value fofw|, as follows. Withz{20"
the language i$v = 0, thus|W| = e = 0. With ng%’pmthe language
size is|W| = n,n;, thus the expressivenessds= 1.

5.2 Results and discussion: e ectiveness

In this section we assess the e ectiveness of the policy learning
in all the problem settings of the experimental campaign. To this
end, we computed thealidation rewardr, 5 for each experiment,
de ned as the average overall reward of the agents on the validation
episodes. Figure 1 shows the normalized validation reward averaged
across all the experiments i.e., for eadn,, n;) the values oRRy4
for di erent e are adjusted to have null mean and standard deviation
equal tol.

The most important nding is that the highest validation reward
corresponds to values aof close tol, i.e., when|W| is close to
nrny. On the other hand, where > 1 the action space grows
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Figure 1: Normalized validation reward R,y VS. the expres-
sivenesse, average across all the experiments.

unnecessarily and the learning process is negatively a ected. In
principle, one could try to tackle the growth of the action space by
increasing the size of the MLP: we did not perform any experiments
to investigate this opportunity.

Figure 1 also shows that the validation reward with= 0 is poor.
This is not surprising, because when the language does not allow
to communicate, an agent does not have any information about
its target, thus the learned policy can only tend to minimize the
distance between a robot and all targets. In summary, this gure
shows that the policy learning process is indeed e ective in learning
how to communicate, in order to solve the speci c cooperative task.
Furthermore, it shows that the policy learning is most e ective
when the size of the language is su ciently large to (potentially)
allow associating approximately one symbol with each possible
robot-target association.

Figure 2 provides the relation between validation reward and ex-
pressiveness in a more granular form. The gure contains a curve
for each pair(n,, n;) considered (in each curve, the number of
symbols|W| varies so as to span the intervgl, 4] for the expres-
siveness). The validation reward fmg%'t“m is represented by a dot
lyingate = 1.

The impact of expressiveness on validation reward is more ev-
ident for larger values ofi,, andn;: it can be seen that the upper
lines (corresponding to lower values ef andn;) tend to exhibit a
constant validation reward, except for very low values of expres-
siveness, while the bottom lines show a degrading behavior when

expressiveness grows. It can also be seen that the gap between

ng%rt"m and the learned policies is higher for larger valuesmpfand
ng.

Further insights on the relation between validation reward and

expressiveness can be obtained from Table 2 and Figure 3. In partic-

ular, Table 2 shows that wheais su ciently large (i.e., when|W|
is at least equal ta,n;) Ryq is higher if n; is low and viceversa.
This result con rms the intuition that cooperating toward reaching
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nr=4n; =2e0pt
nr =4n; =3e0pt
nr =4n; =4e0pt

Figure 2: Validation reward R, of the learned policies and
of the Opt baseline vs. the expressiveness e.

that there is no intuitive relationship between,n; andR,4). Inter-
estingly, though, Figure 3 shows that there is signi cant variability
in the outcome of policy learning, more so when expressiveness is
large: the rst quartile of the distribution fore = 3.0 spans nearly
the same range of values as the whole distribution.

Table 2: Validation reward for selected values of expressive-
ness.

e=0.25 e=1.0 e=3.0
ny ng u o [ o u o
2 -37.84 0.10 -13.80 0.02 -13.03 0.02
2 3 -40.89 0.12 -15.48 0.03 -14.78 0.03
4 -2880 0.03 -16.02 0.02 -15.47 0.02
2 -53.87 0.17 -2492 0.08 -26.84 0.04
3 3 -36.75 012 -30.32 0.05 -32.48 0.23
4 -4766 0.10 -41.72 0.10 -4534 0.15
2 -51.85 0.08 -47.31 0.12 -53.56 0.12
4 3 -6558 0.08 -63.20 0.08 -72.10 0.20
4 7447 039 -8220 0.20 -88.40 0.09

5.3 Results and discussion: e ciency

less targets is easier than toward reaching more targets. On the In this section we assess the e ciency of the policy learning. To
other hand, when the language is not expressive enough (i.e., when this end, we computed the average episode reward (gzening

e is too small), the resulting behavior is unpredictable in the sense
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rewardRjeam) €very512 episodes of the learning process.
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Figure 4 shows howRjear changes during the learning foB

combinations o, n, (one for each plot). For each combination  pest e ectiveness is obtained when the vocabulary size is close to
we considered values for expressiveness and the baseline policies. {he product between number of agents and number of targets: a
With n, = n; = 2, all policies reach the respective maximal  gmpaller vocabulary is not expressive enough while a larger vocabu-

learning reward relatively quickly, thus very e ciently. It can also lary makes it more di cult to explore the resulting larger search
be observed a sharp separation between two groups of palicies, gpace.
one includingzg2®™  and the learned policy withe = 0.25 and
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