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ABSTRACT
The increasing diffusion of smart devices, along with the dy-
namism of the mobile applications ecosystem, are boosting
the production of malware for the Android platform. So far,
many different methods have been developed for detecting
Android malware, based on either static or dynamic analy-
sis. The main limitations of existing methods include: low
accuracy, proneness to evasion techniques, and weak valida-
tion, often limited to emulators or modified kernels.

We propose an Android malware detection method, based on
sequences of system calls, that overcomes these limitations.
The assumption is that malicious behaviors (e.g., sending
high premium rate SMS, cyphering data for ransom, bot-
net capabilities, and so on) are implemented by specific sys-
tem calls sequences: yet, no apriori knowledge is available
about which sequences are associated with which malicious
behaviors, in particular in the mobile applications ecosystem
where new malware and non-malware applications continu-
ously arise. Hence, we use Machine Learning to automati-
cally learn these associations (a sort of “fingerprint” of the
malware); then we exploit them to actually detect malware.
Experimentation on 20 000 execution traces of 2000 appli-
cations (1000 of them being malware belonging to different
malware families), performed on a real device, shows promis-
ing results: we obtain a detection accuracy of 97%. More-
over, we show that the proposed method can cope with the
dynamism of the mobile apps ecosystem, since it can detect
unknown malware.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-

cation -Validation; D.4.6 [Operating Systems]: Security
and Protection—Invasive software

General Terms
Security

Keywords
malware, Android, dynamic analysis, security, machine learn-
ing

1. INTRODUCTION
A number of surveys by specialised companies and commer-
cial press articles provide evidence that the mobile malware
on the Android platform is growing in volume and impact [6,
8, 7]. There are two general approaches to implement mal-
ware detectors based on (a) static analysis or (b) dynamic
analysis. Broadly speaking, the former does not require
many resources, in terms of enabling infrastructure, and is
faster to execute than the latter, but it is more prone to be
evaded with techniques whose effectiveness has been largely
demonstrated in the literature [24, 30, 35]. The latter is
harder to bypass, as it captures the behavior, but it usu-
ally needs more resources and cannot be run directly on the
devices (it is often performed on virtual or dedicated ma-
chines).

We propose a malware detection technique based on dy-
namic analysis which considers sequences of system calls
that are likely to occur more in malware than in non-malware
applications. The rationale behind our choice can be ex-
plained as follows. Often, the process of malware evolution
mainly consists of modifications to existing malware. Mal-
ware writers use to improve mechanisms of infection, ob-
fuscation techniques, or payloads already implemented in
previous malware, or tend to combine them [36]. This in-
deed explains why malware is classified in terms of families,
i.e., malicious apps which share behaviors, implementation
strategies and characteristics [10, 37]. As a consequence,
malicious apps belonging to the same family are very likely
to exhibit strong similarities in terms of code and behavior.
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Our assumption is that the behavior similarities among ma-
licious apps could be used to detect new malware. We chose
to characterize behavior in terms of sequences of system calls
as this representation is, on the one hand, specific enough
to capture the app behavior and, on the other hand, it is
generic enough to be robust to camouflage techniques aimed
at hiding the behavior. In other words, we assume that the
frequencies of a set of system calls sequences may repre-
sent a sort of fingerprint of the malicious behavior. Thus,
new malware should be recognized when that fingerprint is
found.

The contributions of this paper can be summarized as fol-
lows:

1. We designed a method for (i) automatically selecting,
among the very large number of possible system calls
sequences, those which are the most useful for mal-
ware detection, and, (ii) given the fingerprint defined
in terms of frequencies of the selected system calls se-
quences, classifying an execution trace as malware or
non-malware.

2. We performed an extensive experimental evaluation
using a real device on which we executed 2000 apps
for a total of 20 000 runs: we found that our method
delivers an accuracy up to 97%. We remark that, in
most cases, previous works based on dynamic analysis
validated their proposals using emulators and modified
kernels, which produce outcomes which are less realis-
tic than the outcomes deriving from real devices, i.e.,
the one used in this experimentation.

3. We assessed our method also in the more challeng-
ing scenario of zero-day attacks, where the detection
is applied to new malware applications or new mal-
ware families, i.e., to applications whose behavior has
never observed before (and hence has not be exploited
to build the fingerprint).

The reminder of the paper is organized as follows: Section 2
thoroughly analyses related work, Section 3 introduces the
approach, and Section 4 illustrates the validation of the ap-
proach. Finally, Section 5 draws the conclusions.

2. RELATED WORK
Malware detection techniques can be characterized in terms
of the features they use to discriminate between malware
and non-malware applications: those features can be ob-
tained by means of static analysis or dynamic analysis. In
general, static analysis captures suspicious patterns within
the code (or artifacts related to code, such as meta informa-
tion), whereas dynamic analysis captures suspicious patterns
related to the behavior observed during the application run-
ning [16, 28]. Here we review recent works based mainly on
dynamic analysis, and specifically on the analysis of system
calls [14, 19, 26, 32, 18, 27, 21, 31, 20, 13].

Canfora et al. [14] propose a method for detecting mobile
malware based on three metrics, which evaluate: the occur-
rences of a reduced subset of system calls, a weighted sum of
a subset of permissions which the application requires, and

a set of combinations of permissions. The experimentation
of this paper considers a sample of 200 real world malicious
apps and 200 real world trusted apps and produced a preci-
sion of 74%. CopperDroid [26] recognizes malware through
a system calls analysis using a customized version of the An-
droid emulator able to tracking system calls. Wang et al. [33]
use an emulator to perform a similar task. The method was
validated on a set of 1600 malicious apps, and was able to
find the 60% of the malicious apps belonging to one sample
(the Genoma Project), and the 73% of the malicious apps
included in the second sample (the Contagio dataset).

Jeong et al. [19] hook system calls to create, read/write op-
erations on files, and intents activity to detect malicious
behavior. Their technique hooks system calls and a binder
driver function in the Android kernel. The authors used a
customized kernel on a real device, and the sample included
2 malicious apps developed by the authors. In [32] the au-
thors characterize the response of an application in terms
of a subset of system calls generated from bad activities in
background when they stimulate apps with user interfaces
events. They use an Android emulator for running experi-
ments and their evaluation is based on 2 malicious samples
of DroidDream family (Super History Eraser and Task Killer
Pro). Schmidt et al. [27] used the view from Linux-kernel
such as network traffic, system calls, and file system logs to
detect anomalies in the Android system. The method pre-
sented in reference [18] consists of an application log and a
recorder of a set of system calls related to management of
file, I/O and processes. They use a physical device, with
an Android 2.1 based modified ROM image. The evaluation
phase considers 230 applications in greater part downloaded
from Google Play and the method detects 37 applications
which steal some kinds of personal sensitive data, 14 appli-
cations which execute exploit code and 13 destructive appli-
cations.

Concerning system call usage in systems other than Android,
authors in [21] developed a system calls collection module
that was installed on ten machines running Microsoft Win-
dows XP, used by people carrying out their normal activi-
ties. They observed 242 trusted different applications, col-
lecting 1.5 billion system calls over a period of several weeks.
Kolbitsch et al. [20] track dependencies among system calls
to match the activity of an unknown program against the
trained behavior models from six different malware families.
They evaluate the technique with 300 Microsoft Windows
worm with a detection effectiveness of 64% (varying from
10% regarding the Agent family from 90% with the Allaple
family). In [13] the authors adopt system calls to detect
malicious JavaScript. They evaluate two techniques for de-
tecting malicious web pages based on system calls: the first
one consists of counting the occurrences of specific system
calls, while the second one consists of retrieving system calls
sequences. The first technique produces an accuracy slightly
higher that the second one (97% vs. 96%).

In summary, the main differences between our work and
other dynamic analysis techniques for malware detection are:

• Our approach takes into account all the system calls
rather than a reduced set and we consider sequences
of system calls, rather than system calls taken in iso-
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lation.

• We validate our approach on a large set of 2000 appli-
cations. The only papers which consider a very large
dataset [17, 38] do not propose neither assess a detec-
tion method, but evaluate properties of the infection
rate within a specific marketplace.

• We obtain a high detection accuracy (97%). The pa-
pers proposing a method with better performances than
ours have a data set whose size is much smaller than
our data set and, in some cases, malware samples are
written by the authors rather than taken from the real
marketplaces.

• We run the experimentation on a real device, while
quite all the papers make use of emulators, which re-
duces the truthfulness of the experiments.

3. DETECTION METHOD
We consider the problem of classifying an execution trace of
a mobile application as trusted or malicious, i.e., classifying
the corresponding application as non-malware or malware.
An execution trace is a sequence t in which each element
represents a system call being issued by the application un-
der analysis (AUA): we consider only the function name and
discard all the parameters values. We denote by C the set
of all the possible system calls, i.e., the alphabet to which
symbols forming a sequence t belong.

A system call is the mechanism used by a user-level pro-
cess or application layer to request a kernel level service to
the operating system, such as power management, memory,
process life-cycle, network connection, device security, ac-
cess to hardware resources [29]. When performed, a system
call implies a shift from user mode to kernel mode: this al-
lows the kernel of the operating system to perform sensitive
operations. When the task carried out by the invoked sys-
tem call is completed, the control is returned to the user
mode. In [9] Android kernel invocations are sub-grouped
into: (i) system calls which directly invoke the native kernel
functionality; (ii) binder calls, which support the invoca-
tion of Binder driver in the kernel (Binder is a system for
inter-process communication); and (iii) socket calls, which
allow read/write commands and send data to/from a Linux
socket. System calls are not called directly by a user pro-
cess: they are invoked through interrupts, or by means of
asynchronous signals indicating requests for a particular ser-
vice sent by the running process to the operating system. A
Linux kernel (which the Android system builds on) has more
than 250 system calls: our method considers all the system
calls generated by the AUA when running.

The classification method here proposed consists of two phases,
the training phase, in which a classifier is built on a set of la-
beled examples, and the actual classification phase, in which
a trace is classified by the classifier.

In the training phase, we proceed as follows. Let T be a set
of labeled examples, i.e., a set of pairs (t, l) where t is a trace
and l ∈ {trusted,malicious} is a label. We first transform

each trace t in a feature vector f(t) ∈ [0, 1]|C|n , where n is
a parameter. Each element of f(t) represents the relative
occurrences of a given n-long subsequence of system calls in

t. For example, let n = 3 and let f2711(t) represents the rel-
ative occurrences of the subsequence {open, stat64, open}
in t (i.e., in this example, the index of the element of f
which corresponds to the subsequence {open, stat64, open}
is 2711), then f2711(t) is obtained as the number of occur-
rences of that subsequence divided by the sequence length
|t|.

The number |C|n of different features may be remarkably
large: for this reason, we perform a feature selection pro-
cedure aimed at selecting only the k feature which best
discriminate between trusted and malicious applications in
T . The feature selection procedure comprises of two steps.
Let Tt and Tm be respectively the set of trusted and ma-
licious traces, i.e., Tt := {(t, l) ∈ T : l = trusted} and
Tm := {(t, l) ∈ T : l = malicious}.

In the first step, we compute, for each ith feature, the rela-
tive class difference δi as:

δi =

∣∣∣ 1
|Tt|

∑
(t,l)∈Tt

fi(t)− 1
|Tm|

∑
(t,l)∈Tm

fi(t)
∣∣∣

max(t,l)∈T fi(t)

We then select the k′ � k features with the greatest δi
among those for which max(t,l)∈T fi(t) > 0—k and k′ are
parameters of the method.

In the second step, we compute, for each ith feature among
the k′ selected at the previous step, the mutual informa-
tion Ii with the label. We then select the k features with
the greatest Ii. During the exploratory analysis, we also
experimented with a feature selection procedure which took
into account, during the second step, the inter-dependencies
among features: we found that it did not deliver better re-
sults.

Finally, we train a Support Vector Machine (SVM) on the
selected features for the traces contained in T : we use a
Gaussian radial kernel with the cost parameter set to 1.

The actual classification of an execution trace t is performed
by computing the corresponding feature vector f(t), retain-
ing only the features obtained by the aforementioned feature
selection procedure, and then applying the trained classifier.

4. EXPERIMENTAL EVALUATION
We performed an extensive experimental evaluation for the
purpose of assessing our method in the following detection
scenarios:

• Unseen execution trace Ability to correctly classify an
execution trace of an application for which other execu-
tion traces where available during the training phase.

• Unseen application Ability to correctly classify an ex-
ecution trace of an application for which no execution
traces were available during the training phase, but
belonging to a malware family for which some traces
were available during the training phase.

• Unseen family Ability to correctly classify an execution
trace of a malware application belonging to a family
for which no execution traces were available during the
training phase.
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Clearly, the considered scenarios are differently challenging
(the former is the least challenging, the latter is the most
challenging), since the amount of information available to
the training phase, w.r.t. the AUA, is different. We investi-
gated these scenarios using a single dataset T , whose collec-
tion procedure is described in the next section, and varying
the experimental procedure, i.e., varying the way we built
the training set T and the testing set T ′ from T .

4.1 Baseline
In order to provide a baseline, we designed and evaluated
a detection method based on application permissions. As
discussed in sections 2, permissions have been shown to be
a relevant feature for the purpose of discriminating between
malware and non-malware applications [10, 23, 22, 11, 14,
34, 15, 12].

In particular, in the baseline method we build a feature vec-
tor f for each application where an element fi is 1 or 0,
depending on the respective ith permission being declared
for that application. The list of all the permissions (and
hence the length of the feature vectors) is determined once
in the training phase. The remaining part of the baseline
method is the same as in the proposed method: two steps
feature selection, SVM training and actual classification us-
ing the trained SVM on the selected features. Note that the
only parameter which matters in the baseline method is the
number k of selected features.

4.2 Data collection
4.2.1 Applications

We built a dataset of traces collected from 2000 Android
applications, 1000 trusted and 1000 malware.

The trusted applications were automatically collected from
Google Play [1], by using a script which queries an unofficial
python API [3] to search and download apps from Android
official market. The downloaded applications belong to dif-
ferent categories (call & contacts, education, entertainment,
GPS & travel, internet, lifestyle, news & weather, produc-
tivity, utilities, business, communication, email & SMS, fun
& games, health & fitness, live wallpapers, personalization).
The applications retrieved were among the most downloaded
in their category and they are free. We chose the most popu-
lar apps in order to increase the probability that these apps
were actually trusted. The trusted applications were col-
lected between January 2014 and April 2014 and they were
later analysed with the VirusTotal service [5]. This service
run 52 different antivirus software (e.g., Symantec, Avast,
Kasperky, McAfee, Panda, and others) on the app: the out-
put confirmed that the trusted apps included in our dataset
did not contain malicious payload.

The malware dataset was obtained from the Drebin dataset.
This dataset consists of a total of 5560 applications belong-
ing to 179 different families, classified as malware [10, 30].
To the best of our knowledge, this is the most recent dataset
of mobile malware applications currently used to evaluate
malware detectors in literature.

The malware dataset includes 28 different families, unevenly
represented in the dataset. In order to improve the validity
of the experiment, we randomly selected 1000 applications.

4.2.2 Execution traces
We aimed at collecting execution traces which were realistic.
To this end, (i) we used a real device, (ii) we generated
a number of UI interactions and system events during the
execution, and (iii) we collected 10 execution traces for each
application (totaling 20 000 traces), in order to mitigate the
occurrence of rare conditions and to stress several running
options of the AUA.

More in detail, the executions were performed on a Google
Nexus 5 with Android 4.4.4 (KitKat). The Nexus 5 is pro-
vided with a Qualcomm Snapdragon 800 chipset, a 32-bit
processor quad core 2.3 GHz Krait 400 CPU, an Adreno
330 450 MHz GPU, and 2 GB of RAM. The used model had
16 GB of internal memory.

Concerning the UI interactions and system events, we used
the monkey tool of the Android Debug Brigde (ADB [2])
version 1.0.32. Monkey generates pseudo-random streams
of user events such as clicks, touches, or gestures; moreover,
it can simulate a number of system-level events. Specifically,
we configured Monkey to send 2000 random UI events in one
minute and to stimulate the Android operating system with
the following events (one every 5 s starting when the AUA
is in foreground): (1) reception of SMS; (2) incoming call;
(3) call being answered (to simulate a conversation); (4) call
being rejected; (5) network speed changed to GPRS; (6) net-
work speed changed to HSDPA; (7) battery status in charg-
ing; (8) battery status discharging; (9) battery status full;
(10) battery status 50%; (11) battery status 0%; (12) boot
completed. This set of events was selected because it repre-
sents an acceptable coverage of all possible events which an
app can receive. Moreover, this list takes into account the
events which most frequently trigger the payload in Android
malware, according to [36, 37].

In order to collect the traces for an AUA, we built a script
which interacts with ADB and the connected device and
performs the following procedure:

1. copies the AUA into the storage device;

2. installs the AUA (using the install command of ADB);

3. gets the package name and the class (activity/service)
of the AUA with the launcher intent (i.e., get the AUA
entry point, needed for step 4);

4. starts the AUA (using the am start command of ADB);

5. gets the AUA process id (PID, needed for step 6);

6. starts system calls collection;

7. starts Monkey (using the monkey command of ADB),
instructed to send UI and system events;

8. waits 60 s;

9. kills the AUA (using the PID collected before);

10. uninstalls the AUA (using the uninstall command of
ADB);

11. deletes the AUA from the device.
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Table 1: Statistics about the length |t| of collected
sequences forming our dataset T .

Subset Mean 1st qu. Median 3rd qu.
Trusted 23 170 6425 15 920 31 820
Malware 12 020 2422 4536 11 160
All 17 600 3397 8198 23 390

Table 2: Percentage of ten most occurring system
calls in our dataset, divided between traces collected
for trusted (left) and malware (right) applications.

Call (trusted) Perc.
clock_gettime 30.66
ioctl 9.00
recvfrom 8.67
futex 7.89
getuid32 4.96
getpid 4.84
epoll_wait 4.78
mprotect 4.67
sendto 4.60
gettimeofday 3.19

Call (malware) Perc.
clock_gettime 28.78
ioctl 8.85
recvfrom 8.85
epoll_wait 7.50
getuid32 6.64
futex 6.61
mprotect 6.34
getpid 5.64
sendto 2.74
cacheflush 2.00

To collect system calls data (step 6 above) we used strace [4],
a tool available on Linux systems. In particular, we used the
command strace -s PID in order to hook the AUA process
and intercept only its system calls.

The machine used to run the script was an Intel Core i5
desktop with 4 GB RAM, equipped with Linux Mint 15.

Tables 1 and 2 show salient information about the collected
execution traces: the former shows the statistics about the
length |t| of collected sequences. It can be observed that
the system calls sequences of trusted apps are, in general,
much longer than those of malicious apps. This suggests that
the behavior of trusted apps is much richer than the one of
malicious apps, which is expected to be basically limited to
the execution of the payload. From another point of view,
malware apps could exhibit poorer variability behavior than
trusted apps and hence recurring sequences, corresponding
to the malware fingerprint, should be identifiable.

Table 2 shows the percentage of the ten most occurring sys-
tem calls in our dataset, divided between traces collected
for the trusted (left) and malware (right) applications. It
can be seen that the simple occurrences of system calls is
not enough to discriminate malicious from trusted apps.
As a matter of fact, both malware and trusted applica-
tions exhibit the same group of most frequent system calls:
clock_gettime, ioctl, recvform are the top three for both
the samples.

4.3 Methodology and results
4.3.1 Unseen execution trace

For this scenario, we built the training set T by including 8
(out of 10) traces picked at random for each application in
T . The remaining 2 traces for each application were used
for testing (i.e., T ′ = T \ T ). This way, several traces for
each application and for each family were available for the
training phase of our method. In other words, in this and

Table 3: Results on unseen execution traces.
Method n k Accuracy FNR FPR

System calls

1 25 91.1 11.5 6.2
1 50 92.0 10.0 6.0
1 75 91.8 10.3 6.2
2 250 96.1 3.8 4.1
2 500 96.5 3.4 3.5
2 750 96.3 4.0 3.4
3 250 95.5 4.9 4.1
3 500 96.2 4.4 3.1
3 750 97.0 3.0 3.0

Permissions

25 56.9 97.7 0.2
50 60.4 22.4 53.2

100 69.8 44.6 18.9
250 88.9 17.0 6.5
500 90.4 16.3 4.3
750 90.6 16.0 4.2

the following scenario (Section 4.3.2), we used 80% of the
available data for training and the remaining 20% for testing.

After the training phase, we applied our method to each
trace in T ′ and measured the number of classification errors
in terms of False Positive Rate (FPR)—i.e., traces of trusted
applications classified as coming from malware applications—
and False Negative Rate (FNR)—i.e., traces of malware ap-
plications classified as coming from trusted applications.

We experimented with different values for the length n of the
calls subsequences and the number k of selected features—
k′ was always set to 2000. We varied n in 1–3 and k in
25–750, when possible—recall that k is the number of se-
lected features among the |C|n available features, hence we
tested only for the values of k > |C|n, with a given n. In
order to mitigate lucky and unlucky conditions in the ran-
dom selection of the traces used for the training phase, we
repeated the procedure 3 times for each combination of n, k
by varying the composition of T and T ′.

The parameters n and k represent a sort of cost of the
detection method: the larger their values, the higher the
amount of information available to the classifier and, hence,
the effort needed to collect it. However, provided that some
system mechanism was available to collect the system calls
generated by each process, we think that no significant dif-
ferences exist in an implementation of our method among
different values for n and k which we experimented within
this analysis.

Table 3 shows the results obtained with our method applied
with several combinations of n and k values: for each combi-
nation, the table shows the average values of accuracy, FNR,
and FPR across the 3 repetitions. The table also shows the
results obtained with the baseline method (see Section 4.1).
It emerges that the proposed method is largely better than
the baseline, as we obtained a best-in-class accuracy of 97%
with the former and 91% with the latter. It is important
to notice that FNR is low for the highest values of n and k,
and that such a value is balanced with FPR.

On the other hand, we note that 91% is a pretty high ac-

17



curacy: this figure suggests that permissions indeed play
an important role in Android malware detection. Yet, they
are not enough to effectively discriminating malware, as the
rate of false negative keeps high (16%). As a matter of fact,
this value can be also explained by the common practice of
“overpermissions” (malware writers tend to write a long list
of permissions, including those which are not necessary to
the app for hiding “suspect” permissions to users). More-
over, the permissions list is an indicator at a coarse grain
for identifying malicious behavior, as it could happen that
a malicious behavior requires the same permissions of a licit
behavior.

Concerning the impact of n and k on the detection accu-
racy, it can be seen that, for both parameters, the higher the
better. For n, this means that longer sequences of system
calls better capture the application behavior, and are hence
more suitable to constitute a fingerprint. On the other hand,
k represents the number of sequences which the method
deems relevant, i.e., the fingerprint size: results show that
the longer the sequences, the larger the size needed to fully
enclose the information represented by the sequences. How-
ever, we verified that larger values for k did not deliver im-
provements in the accuracy. It can be seen that increasing
n the accuracy grows and it grows also faster with k.

With n = 1, our method just uses frequencies of system
calls, rather than sequences: results of Table 3 show that
this variant exhibits a lower detection rate, compared to
the case in which sequences are considered. This finding
suggests that the simple frequency of system calls can be
a misleading feature: indeed, there are system calls which
are more likely to be used in a malware rather than in a
trusted app (e.g., epoll_wait and cacheflush, as reported
in Table 2), but they do not allow to build a highly accurate
classifier.

Concerning the execution times, the training phase of our
method took, on the average for n = 3 and k = 750, 1183 s,
of which 61 s for the feature selection procedure and 1122 s
for training the SVM classifier: we found that these times
grow roughly linearly with k′ and k, respectively. The actual
classification phase of a single trace took, on the average for
n = 3 and k = 750, 18 ms: we found that this time is
largely independent from n and grows roughly linearly with
k. Finally, the trace processing (i.e., transforming a trace
t in a feature vector f(t)) took, on the average for n = 3,
135 ms: we found that this time grows roughly exponentially
with n. We obtained these figures on a machine powered
with a 6 core Intel Xeon E5-2440 (2.40 GHz) equipped with
32 GB of RAM: we remark that we used a single threaded
prototype implementation of our method.

4.3.2 Unseen application
For this scenario, we built the training set T by including
all the traces of 1600 (among 2000) applications picked at
random and evenly divided in trusted and malicious.

Then, after the training phase, we applied our method to
the traces of the remaining 400 applications and measured
accuracy, FPR and FNR. This way, no traces for a given
AUA were available for the training; however, traces for ap-
plications different from the AUA yet belonging to the same

Table 4: Results on unseen applications, with n = 3.
k Accuracy FNR FPR

250 94.1 7.0 4.8
500 94.7 6.4 4.3
750 94.9 6.1 4.2

family could have been available for the training.

Since the results of previous experiments show that the best
effectiveness can be obtained with n = 3, we varied only k in
250–750, in order to investigate if the ideal fingerprint size
changes when unseen applications are involved. We repeated
the procedure 3 times for each value of k by varying the
composition of T and T ′.

Table 4 shows the results. The main finding is that our de-
tection method is able to accurately detect (≈ 95%) also un-
seen malware, provided that it belongs to a family for which
some execution traces were available. This finding further
validates that our method can build an effective malware
fingerprint. Moreover, it supports our assumption that se-
quences of system calls capture the similarity of behavior
among malware applications of known families.

Concerning the impact of k on the accuracy, it can be seen
that 750 remains the value which delivers the best accuracy.
Moreover, we found the upper limit of k value beyond which
no significant accuracy improvement occurs, is lower than in
the former scenario. We speculate that this depends on the
fact that less families are represented in the training set,
hence a slightly smaller fingerprint size is enough to fully
exploit the expressiveness of sequences of n = 3 system calls.

4.3.3 Unseen family
For this scenario, we repeated the experiment for each mal-
ware family of our dataset.

In particular, for a given family, we built the training set T
by including all the traces of all the malicious applications
not belonging to that family and all the traces of all the
trusted applications.

Then, after the training phase, we applied our method to
all the traces of all the applications of the considered family
and measured FNR. This way, no traces for a given AUA
were available for the training; moreover, no traces for any
application belonging to the same family of the AUA were
available for the training. We executed this experimentation
with n = 3 and k = 750.

Table 5 shows the results for the 10 families most repre-
sented in our dataset. We remark that, since we were in-
terested in assessing our method ability in detecting mal-
ware belonging to unseen families, we did not tested it on
trusted traces, which we instead used all for the training.
It can be seen that FNR greatly varies among these fam-
ilies: it spans from a minimum of 3.5% to a maximum of
38.5%. Hence, there are some unseen families which could
have been detected by our method (GinMaster and zHash);
conversely, for other families the detection rate is remarkably
lower. We think that this happens because some malware
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Table 5: FNR on unseen families, with n = 3 and
k = 750.

Family FNR
DroidKungFu 31.8
GinMaster 3.5
BaseBridge 4.6
Geinimi 18.6
PJApps 23.7
GloDream 38.5
DroidDream 32.9
zHash 4.3
Bgserv 12.6
Kmin 27.4

family is more different, in terms of behavior, than others:
hence, a fingerprint built without that family could not be
effective enough to detect malware applications belonging to
that family. We conjecture that a larger and more represen-
tative training set—as the one which could be available in
a practical implementation of our approach—could address
this limitation.

5. CONCLUDING REMARKS AND FUTURE
WORK

We presented a method for detecting Android malware which
is based on the analysis of system calls sequences. The un-
derlying assumption is that a fingerprint of malware behav-
ior can be built which consists of the relative frequencies of
a limited number of system calls sequences. This assump-
tion is supported by the fact that the typical evolution of
Android malware consists in modifying existing malware,
and hence behaviors are often common among different ma-
licious apps. Moreover, capturing app behavior at such a
fine grain allows our method to be resilient to known eva-
sion techniques, such as code alteration at level of opcodes,
control flow graph, API calls and third party libraries.

We used Machine Learning for building the fingerprint using
a training set of execution traces. We assessed our method
on 20 000 execution traces of 2000 apps and found that it is
very effective, as it obtained a malware detection accuracy
of 97%, which is high compared to previous works, most of
which have been assessed on a much smaller dataset. Fur-
thermore, our validation differs from the most discussed in
literature, as it makes use of real devices rather than emu-
lators or modified kernel, which makes the experiment more
realistic. As future work, we plan to investigate the following
concerns:

• Evaluate to which extent our method can withstand
common evasions techniques [24, 25].

• Consider longer sequences (i.e., greater values of n),
since this could allow to capture even better the mal-
ware behavior. Unfortunately, since the actual number
of possible sequences grows exponentially with n, this
also implies coping with a very large problem space.

• Improve the quality of the training data by labelling
only those portions of the execution traces of malware
applications which actually correspond to malicious
behaviors.

• Extend our method to not only classify an entire exe-
cution trace as malicious or trusted, but also to specify
exactly where, in the trace, there appears to occur the
malicious behavior.
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