
Detection of Hidden Fraudulent URLs within Trusted Sites using Lexical Features

Enrico Sorio, Alberto Bartoli, Eric Medvet

DIA - Engineering and Architecture Dept.
University of Trieste, Italy

enrico.sorio@phd.units.it, bartoli.alberto@units.it, emedvet@units.it

Abstract—Internet security threats often involve the fraud-
ulent modification of a web site, often with the addition of
new pages at URLs where no page should exist. Detecting
the existence of such hidden URLs is very difficult because
they do not appear during normal navigation and usually
are not indexed by search engines. Most importantly, drive-
by attacks leading users to hidden URLs, for example for
phishing credentials, may fool even tech-savvy users, because
such hidden URLs are increasingly hosted within trusted sites,
thereby rendering HTTPS authentication ineffective. In this
work, we propose an approach for detecting such URLs based
only on their lexical features, which allows alerting the user
before actually fetching the page. We assess our proposal on
a dataset composed of thousands of URLs, with promising
results.

Keywords-phishing; web site defacement

I. INTRODUCTION

Internet security threats often involve the fraudulent mod-

ification of a web site. Such modifications may consist

in: (i) changes to existing pages, or (ii) addition of new

pages at URLs at which no page is supposed to exist.

Fraudulent changes to existing pages may be useful for a

variety of purposes, including defacement, addition of links

to pages to be promoted in search engine results (search
spam or web spam), exploitation of browser vulnerabilities

for spreading of malware. Detecting such changes may be

relatively easy or very difficult, depending on the specific

change: an administrator (or a user) looking at a defaced

page realizes immediately that there has been an intrusion,

while the addition of a small malicious piece of Javascript

may easily remain undetected.

Fraudulent creation of pages at URLs at which no page

is supposed to exist may be useful for essentially the same

reasons, except that in this case defacements are not visible

to all users but only to those users that know the URL

of the page containing disturbing content. These forms of

defacements are meant to be a proof of ability of their

authors and a significant fraction of the defacements hosted

on ZoneH (http://www.zone-h.org) indeed belong

to this category.

Detecting the existence of pages as such hidden URLs

may be very difficult, because administrators will likely

never see any anomaly in the served content and most users

will never visit those URLs. For example, a large scale

study on defacements hosted on Zone-H showed that the

typical reaction time for recovering the defaced page is in

the order of several days [1]. Intrusions of this form have

become particularly appealing to attackers, for example in

the context of illegal drug trade [2], and affect even sites

of public interest. For example, a recent analysis of sites

belonging to Italian Public Administrations has found that

more than 9% of the analyzed domains host content that

admittedly should not be there [3].

It is important to point out that phishing campaigns

coupled with attacks of this sort may be extremely danger-

ous and fool even tech-savvy users: HTTPS–the main and

ubiquitous line of defense in sensitive web sites—does not
provide any defense in this respect. HTTPS ensures secrecy,

integrity and authentication by means of cryptographic tech-

niques. The problem is, the server site is authenticated as a

whole: thus, any page coming from that site appears as being

legitimate, from the HTTPS point of view.

The strategies for persuading unsuspecting users to visit

hidden fraudulent pages can differ, but all the methods

require that the user takes some action, usually by clicking

on a link which points to the fraudulent URL. Ideally, when

a user clicks on an unknown URL, he should assess the risk

associated with her action. This risk assessment is indeed a

difficult task for common users and is furtherly exhacerbated

by the fact that a URL could refer a fraudulent content which

is hosted within a site trusted by the user, i.e., an HTTPS-

authenticated site routinely accessed by the user and whose

administrators perform their best effort to host content that

is indeed genuine and not harmful.

In this paper we present an approach for the detection

of hidden fraudulent URLs before actually fetching the

corresponding page. A system with this ability could be

deployed in a variety of ways, for instance, within an e-

mail client or within a web browser and trigger an alert

to the user before actually accessing the fraudulent page

itself. It could also be deployed within a web proxy, at the

outside border of an organization, as a layer for a defense in

depth strategy—of course, an approach like ours that does

not actually analyze the page content is almost not useful

for detecting malware-serving pages.

The peculiarity of our proposal consists in not using

any feature related to the domain part of the URL, i.e.,

the URL portion which identifies the host. The rationale

for this requirement is our focus on addressing fraudulent

2013 International Conference on Availability, Reliability and Security

978-0-7695-5008-4/13 $26.00 © 2013 IEEE

DOI 10.1109/ARES.2013.31

242

URLs inserted into trusted web sites. In this scenario, the

domain part of the URL is obviously not a discriminant

between fraudulent and legitimate URLs belonging to the

same web site. For the same reasons, we purposefully

avoided using other domain-related features, e.g., whois
queries or geographic properties.

We use lexical features extracted from the URL to be

classified, excluding the domain part of the URL. These

features are then input to a Support Vector Machine. We

also propose two variants of this method, which augment the

features available for classification based on the responses

to HTTP requests directed at the site hosting the URL to be

classified, but that do not involve fetching the actual content

of that URL.

Our approach effectiveness was assessed on two cate-

gories of hidden fraudulent URLs: hidden phishing pages

and hidden defacements. The two datasets are composed

of about 6500 and 2150 URLs respectively. Our approach

achieves an accuracy of about 96% for the phishing category

and 99% for the defacement one.

II. RELATED WORK

The problem of detecting fraudulent URLs is long-

established and has been studied from several points of

view. As far as we know, though, this is the first approach

focussed on detecting fraudulent URLs that are hosted on

a trusted (in the sense clarified above) web site. With

respect to other existing approaches for detecting fraudulent

URLs, we (i) excluded the domain part from the feature

used for classifying a URL and (ii) we assessed explicitly

our approach ability to discriminate between fraudulent and

legitimate URLs belonging to the same web site.

Almost all the previous works in this area focused on

the detection of phishing URLs and URLs related to spam-

advertised web sites. In this paper we also consider hidden

defacements URLs—a quick look at the on-line defacement

archive http://www.zone-h.org shows that exploit of this

form occur routinely at organizations of any size. A system

for detecting automatically whether a given URL is defaced

has been proposed in [4]. The system operates as a cloud-

based service and is designed for dynamic web content: it

first builds a profile of the web page and then sends an alert

whenever the page content deviates from that profile. This

system is unable to detect hidden defacements because it

must know the URLs to be monitored in advance.

Techniques for detecting phishing attacks can be sub-

divided in three categories: URL-based, host-based and

content-based detection methods. Broadly speaking, URL-

based approaches are faster and more scalable than the others

since that they can classify a URL based on the URL itself,

without collecting any further information.

An approach that relies only on URL-based features is

proposed in [5]. The authors of the cited work use structural

features of the URLs and some binary features indicating the

presence of certain words in the URLs itself. This approach

requires a fair amount of domain knowledge (for choosing

the words corresponding to features) and, as such, it appears

to be difficult to generalize.

Other studies augment URL-based features by features

extracted from the host where the corresponding document

resides [6], [7], [8], [9]. The approach proposed in [6] uses

lexical features, geographic properties and features extracted

from whois queries: primary domain name, the registrar,

the registrant, and the registration date. Authors of [7], [8],

[9] use a larger set of host-based features such as whois
queries, DNS information, geographic properties, connection

speed and membership in blacklists; these features are used

with online classification algorithms. In [8] the authors

experiment with different classifiers (Support Vector Ma-

chine (SVM), logistic regression, Bayes), whereas in [7] the

features are processed also using the confidence-weighted

algorithm, passive-aggressive algorithm and the perceptron.

Approaches that belong to the content-based cate-

gory [10], [11], [12] are more time consuming than the oth-

ers, since they involve fetching and analyzing the full page

content. The authors of [10] use a number of features coming

from the HTML and JavaScript code found in the page

in addition to URL and host based features: the obtained

features set is analyzed with different classifiers. In [12] the

features corresponding to a URL are extracted using a bag-

of-word approach while the page content is compared to

sets of files from previously confirmed phishing websites

using MD5 hashes. The classification is performed using a

confidence weighted algorithm and tests are conducted on

daily batches of URLs simulating a model updated by a

daily URL blacklist/whitelist feed. The approach proposed

in [11] uses features extracted from the web page content

(the presence of password fields and the external links

frequency) in addition to URL and host based features

with a proprietary machine learning algorithm: due to their

nature, these content-based features fit the phishing URLs

detection scenario, while they could not be appropriate for

the defacement URLs detection scenario—a phishing page

is carefully crafted to resemble genuine content, while a

defacement page is usually very different from the original

page.

III. OUR APPROACH

A URL (Uniform Resource Locator) is a string which

identifies a web resource (Figure 1). We say that a URL

is hidden if the corresponding page is hosted within a site

without the administrator being aware of it. We say that a

URL is fraudulent if the corresponding page is a deface-

ment or a phishing attack (pages devoted to disseminating

malware are beyond the scope of this work). The goal of

the proposed method is to associate an input URL u with a

boolean value which indicates if u is an hidden fraudulent
URL.

243

Figure 1. The structure of a URL
http

sch
em

e

:// foo

u
sern

am
e

: bar

p
assw

o
rd

@ www.here.com

d
o

m
ain

/path/to/there.htm

p
ath

?p=1

q
u

ery
strin

g

#title

frag
m

en
t

id

We propose three increasingly more complex variants of

the method. Each variant makes use of a superset of the

information available to the previous variant. The first one,

which we call lexical, uses only features extracted from the

URL u itself. The second one, lexical+headers, augments

those features with some of the headers obtained as response

to an HTTP request for u. Finally, lexical+headers+age,

uses also some of the headers obtained while fetching the

home page of the domain of u—i.e., the web page identified

by u without the path and subsequent components. In other

words, lexical may be applied for classifying u without

issuing any request for u and may thus be applied offline;

lexical+headers requires one HTTP HEAD request for u;

lexical+headers+age requires one HTTP HEAD request for

u and another HEAD request for the home page of the

domain of u.

Each variant requires a preliminary parameter calibration

to be performed only once based on labelled data collected

in a training set. The training set is transformed into a matrix

F of features, with one row for each URL in the training

set and one column for each feature analyzed—each variant

analyzing a superset of the features analyzed by the previous

one. We describe the three variants in the next sections.

A. Lexical

The lexical variant uses only the URL string itself, as fol-

lows (Figure 1 shows the structure of an example URL..). Let

U = {u1, . . . , un} be the training set and L = {l1, . . . , ln}
the corresponding set of labels: li = true if and only if ui

is an hidden fraudulent URL.

For the tuning, we first remove from each URL ui every

character up to the domain (included), and obtain a string pi.
Then, we extract the unigrams (i.e., character occurrences)

from each pi and obtain a matrix F of features, where fi,j
is the number of occurrences of character cj in pi. Finally,

we train a Support Vector Machine (SVM) on F using the

labels of L. We use a third-degree polinomial kernel with

cost parameter C = 10.

The classification of a unknown URL u is performed with

the same steps as above, i.e.: (i) preprocess u to obtain a

string p; (ii) compute the occurrences in p of the characters

corresponding to the columns of F , obtaining a feature

vector; (iii) apply the SVM to the feature vector.

B. Lexical+headers

The lexical+headers variant uses, in addition to the fea-

tures of the previous variant, features extracted from the

values of some of the HTTP response headers obtained when

requesting the url U to be classified:

1) Server: name and version of the software running the

server;

2) Content-Type: MIME type of the content of the

named web-resource;

3) Content-Lenght: length of the response body in

octets;

4) X-Powered-By: framework of the web application

that produces the content of the web-resource (e.g.,

ASP.NET, PHP, JBoss);

In order to minimize the traffic, we issue HTTP HEAD

requests instead of HTTP GET requests (while a GET asks

for a resource, an HEAD asks for a response identical to

the one that would correspond to a GET, but without the

response body, i.e., without the actual resource).

The tuning of this variant proceeds as follows. For each

ui ∈ U , we perform a HEAD request to ui and store each of

the received header values h1
i , . . . , h

4
i (in case the response

does not contain the k-th header, we set the corresponding

hk
i is to the empty string). We pre-process the values for the

Server and X-Powered-By headers so as to keep only

the framework name and the major and minor version num-

ber (e.g., Apache/2.2.22-12 becomes Apache/2.2).

We then transform the header values in numerical features

as follows. For each k-th header, we build a matrix F k

based on all the vk1 , . . . , v
k
nk

observed values, as follows.

F k has a row for each URL and a column for each distinct

header value: a matrix element fk
i,j of F k is 1 if and only if

hk
i = vkj , 0 otherwise. In other words, F k is a matrix of the

nk binary features corresponding to the observed values for

the k-th header. Finally, the new features in F 1, F 2, F 3, F 4

are added to the original feature matrix F by joining all the

columns of the five matrices.

The remaining part of the tuning step and the classification

step are the same of the lexical variant.

C. Lexical+headers+age

The lexical+headers+age variant augments the previous

features with the difference between the timestamps given

by the values of the Last-Modified header obtained for

the URL u and for the home page corresponding to u. These

timestamps correspond to the creation in the tuning of two

further columns in F , as follows.

For each ui ∈ U , we extract the Last-Modified value

(from the same response to the HEAD request performed

for the previous variant) and store it in ti as a date (in

case the response does not contain the Last-Modified,

we set ti = ∅). Next, we remove from ui the substring

which starts from the path (included) and obtain di, which

is the URL of the home page corresponding to ui. Then,

we perform a HEAD request to di, store the value of the

Last-Modified header in t′i and set ai = ti − t′i (in

seconds). We also set a binary feature a′i to 0, if both ti and

244

t′i were defined (i.e, ti �= ∅ and t′i �= ∅), or 1, if at least one

of them was undefined. Finally, we add two new columns

to F , given by the ai and a′i.
The rationale is that we try to exploit the information

given by the relative age of the u resource, i.e, its last mod-

ification date compared to the home page last modification

date. In other words, if the home page of the web site was

modified long before the URL u under analysis, this could

be a symptom of an hidden fraudulent URL.

IV. EXPERIMENTAL EVALUATION

A. Dataset

We assessed the effectiveness of our approach on two

categories of hidden fraudulent URLs: (i) hidden phishing

pages and (ii) hidden defacements. Due to the lack of

publicly available datasets we collected, for each category,

a set of real-world URLs as described below.

Concerning hidden phishing pages, we used the data

provided by Phishtank1. Phishtank is a public web-based

archive of phishing attacks: a user can report Phishtank of a

possible attack by providing the phishing page URL. A team

of voluntary experts may then verify the user’s notification,

marking the URLs as “valid phish”. Moreover, Phishtank

periodically verify that each phishing attack is actually still

in place—i.e., if a page is served at the corresponding

URL—and mark those URLs as “online”. We composed a

set UP of about 7500 valid and online URLs extracted from

Phishtank; we verified that each URL in UP was still marked

as valid and online for all the duration of our experimental

evaluation.

Concerning hidden defacements, we used data provided

by Zone-H2. The Zone-H Digital Attacks Archive is a public

web-based archive of defacement attacks: users or attackers

themselves report a URL of a defaced page to Zone-H; later,

a human operator verifies and confirms the attack which is

then published on the Zone-H web site. We composed a list

UD of about 2500 URLs extracted from Zone-H.

We assumed that both Phishtank and Zone-H are indeed

authoritative with respect to URLs being fraudulent, i.e., we

assumed that all URLs of UP and UD are fraudulent. A

key ingredient of our problem is the ability of identifying

fraudulent URLs that are hidden . For this reason, we defined

5 sets of URLs: (i) hidden fraudulent URLs: UP
+ and UD

+

(phishing and defacement category respectively); (ii) URLs

of legitimate pages belonging to sites that host fraudulent

URLs: UP
− and UD

− (phishing and defacement category

respectively), (iii) URLs of legitimate pages belonging to

trusted and (as far as we can tell) uncompromised web sites:

U−. In order to populate these sets we proceeded as follows.

First, we dropped from the set of fraudulent URLs UP

and UD: (a) URLs whose domain is an IP address; (b) URLs

1http://www.phishtank.com
2http://www.zone-h.org

edition.cnn.com www.steampunk.dk
www.bbc.com www.weather.com
www.nytimes.com www.godaddy.com
www.microsoft.com www.nbcnews.com
www.whitehouse.gov www.foxnews.com
www.adobe.com www.bankofamerica.com
www.huffingtonpost.com www.spiegel.de
espn.go.com www.aweber.com
www.mediafire.com www.chase.com
www.1advice.com amazonaws.com

Table I
LISTS OF 20 DOMAINS USED TO SELECT THE MAXIMUM CRAWLING

DEPTH.

whose path is empty or equal to index.html. The ratio-

nale for dropping these items is that they are not intended to

be hidden. In the former case, we assume that the whole web

site is involved in the attack (since it has no DNS name):

in other words, it is not a legitimate web site to which an

illegitimate content has been added. In the latter case, the

attack is manifestly not hidden, since it resides at the root

of the domain.

Second, we attempted to identify hidden URLs (i.e., URLs

unknown to the administrators) by assuming that an URL

is hidden if it is never reachable while crawling the site.

Clearly, crawling an entire site is often not feasible. We

hence marked an URL as hidden if it is not found by

crawling the corresponding web site within up to the third

level of depth. In order to justify this choice, in particular

the choice of the third level of depth, we performed the fol-

lowing quantitative analysis. We selected a set W of 20 web

sites extracted from the top 500 web sites ranking provided

by Alexa3. We excluded from this selection: (i) web sites

providing different content depending on whether the user

is authenticated, (ii) social network web sites, (iii) search

engines. Table I shows the 20 selected web sites. For each

web site wi ∈ W , we crawled the site up to the 10th level

of depth and saved all the URLs obtained in the list U−.

We also determined, for each level l, the number of URLs

ni,l found by crawling up to that level. Then, we computed

the crawling coverage Ci,l =
ni,l

ni,10
as the fraction of URLs

found by crawling up to level 10 which were also found by

crawling up to level l. Figure 2 shows crawling coverage,

averaged across all 30 web sites, vs. the level l: it can be seen

that the curve has a clear slope change at l = 3 and tends

to be flat for highest values of l. In other words, crawling

up to the third level is an acceptable compromise between

coverage (which is, on the average, 88% for l = 3) and

easiness of obtaining the data.

We now describe how we populated the sets necessary

for our evaluation. Concerning the sets UP
− and UD

− of

legitimate pages belonging to sites that host fraudulent

URLs, we procedeed as follows. For each ui ∈ UP , we

3http://www.alexa.com/topsites

245

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

C
ra

w
li

n
g

co
v
er

ag
e
C

(%
)

Depth level l

×

×

× × × × × × × ×

Figure 2. Crawling coverage C vs. depth level l.

crawled the corresponding domain di up to the third level

of depth and added all the obtained URLs to the (initially

empty) set UP
− . That is, we (somewhat arbitrarily) assumed

that all the pages in a crawling up to the third level are

indeed legitimate. We repeated the same procedure on UD

and obtained UD
− .

Concerning the sets UP
+ and UD

+ of hidden fraudulent

pages, we procedeed as follows. For each ui ∈ UP , we

added ui to the (initially empty) set UP
+ if, and only if, it

was not found in the crawl described above. We repeated

the same procedure on UD and obtained UD
+ .

Finally, the set U− of legitimate pages belonging to trusted

and (as far as we can tell) uncompromised sites, consisted

of all the URLs found while crawling the 20 web sites in

Table I up to the 10th depth level.

We collected this data during months July to November,

2012 and obtained 6564, 78388, 2144, 94370, 3713 URLS

respectively in UP
+ , UP

− , UD
+ , UD

− and U−. The dataset is

publicly available on our lab web site4.

B. Settings and results

We performed two suites of experiments in order to

evaluate our approach effectiveness separately on the two

hidden URLs categories, i.e., phishing and defacement.

For the purpose of the experimental evaluation, we built,

for each category, a labeled and balanced dataset, as follows.

For the phishing category, we set UP
e to the set containing

all UP
+ URLs, 3282 URLs randomly extracted from UP

− and

3282 URLs randomly extracted from U−; we also set the

corresponding labels LP accordingly. For the defacement

category, we set UD
e to the set containing all UD

+ URLs,

1072 URLs randomly extracted from UD
− and 1072 URLs

randomly extracted from U−; we also set the corresponding

labels LD accordingly.

We assessed the our approach effectiveness in terms of

the following performance indexes (for the sake of clarity,

we here show index names only for the phishing category):

4The link is obscured to comply with the double blind review process.

• false negative rate (FNR on UP
+);

• false positive rate on UP
− (FPR on UP

−);

• false positive rate on U− (FPR on U−).

• accuracy, i.e., the ratio between correctly classified

URLs and all the processed URLs;

For each variant of our method, we repeated 5 times

the following procedure, collecting for each execution the

four performance indexes explained before (for brevity, we

describe the procedure for the phishing category only): (i) we

randomly split UP
e in a training set and testing set, 90% of

URLs used for training and the remaining 10% for testing

(we preserved the proportion of URLs coming from UP
+ , UP

−
and U−), (ii) we trained the SVM classifier on the training

set and, finally, (iii) we applied the trained classifier on each

URL of the testing set.

Tables II and III report the performance indexes, averaged

across the five repetitions, for the three variants of our

method applied on the phishing and defacement categories,

respectively.

The accuracy of our system, using the

lexical+headers+age variant, is greater than 99% and

95% for defacement and phishing categories, respectively.

As expected, the off-line variant (lexical) has a lower

accuracy (98% for defacement and 92% for phishing): on the

other hand, this variant requires just less than a millisecond

to classify an URL, whereas the other on-line variants

require to perform one or two HTTP requests, which can

result in several seconds of elapsed time.

Another key finding is that FPR on U− is lower than

1% for both categories, when using the on-line variants of

our method. Only for the phishing category FPR on UP
− is

slightly higher (about 4%): this result is somewhat justified

because UP
− are negative URLs belonging to compromised

web sites and could hence resemble fraudulent URLs.

Concerning FNR, the experimental evaluation shows that

it is higher for the phishing category (about 5%) than

for the defacement category (less than 1%). The reason is

because an attacker who puts in place a phishing attack will

purposely shape all components of the attack (i.e., including

the URL of the fraudulent page) so as to make it as much

unnoticed as possible. An attacker which hides a defacement

page will likely not care too much of whether the attack URL

is easily detectable.

The time needed for the URL classification is smaller than

1 msec, 800 msec and 1600 msec respectively for lexical,

lexical+headers and lexical+headers+age, on average. Note,

however that the lexical variant can work off-line (i.e.,

without any access to the Internet). The actual computation

time is < 1 msec for classifying an URL; 2 sec and 60 sec

are required for the initial tuning, respectively on a training

set of about 4300 defacement and about 13000 phishing

URLs. We executed all our experiments on a machine

powered with a quad-core Intel Xeon X3323 (2.53 GHz)

and 2GB of RAM, with an high-speed academic connection

246

Method
Accuracy (%) FNR on UP

+ (%) FPR on UP
− (%) FPR on U− (%)

Avg. Dev. Std. Avg. Dev. Std. Avg. Dev. Std. Avg. Dev. Std.
Lexical 92.50 0.62 9.80 0.85 5.20 0.84 4.93 1.21
Lexical+headers 95.34 0.48 4.93 1.05 4.38 0.62 0.79 0.70
Lexical+headers+age 95.57 0.37 4.87 1.06 3.98 0.52 0.73 0.73

Table II
RESULTS FOR THE PHISHING CATEGORY.

Method
Accuracy (%) FNR on UD

+ (%) FPR on UD
− (%) FPR on U− (%)

Avg. Dev. Std. Avg. Dev. Std. Avg. Dev. Std. Avg. Dev. Std.
Lexical 98.37 0.68 0.93 0.74 2.32 0.87 2.41 1.92
Lexical+headers 99.35 0.3 0.37 0.61 0.93 0.57 0.93 0.65
Lexical+headers+age 99.26 0.3 0.47 0.66 1.02 0.61 0.93 0.65

Table III
RESULTS FOR THE DEFACEMENTS CATEGORY.

to the Internet.

V. CONCLUDING REMARKS

Fraudulent creation of pages at URLs at which no page is

supposed to exist has become an increasingly attractive and

common kind of web intrusions. Detecting the existence of

pages as such hidden URLs may be very difficult, because

most users will never visit those URLs or observe any

evident anomaly in the site content. Phishing campaigns

coupled with attacks of this sort may be extremely dangerous

and fool even tech-savvy users, because any page coming

from an HTTPS-protected site appears as being legitimate.
We have proposed and evaluated an approach for the

detection of hidden fraudulent URLs before actually fetching

the corresponding page. The peculiarity of our proposal

consists in not using any feature related to the domain part

of the URL, i.e., the URL portion which identifies the host.

Our proposal could be deployed in a variety of ways, either

on end-user platforms or within a border web proxy as a

layer for a defense in depth strategy.
The experimental results are very promising and have

been obtained by a one-time training of our methods on

a few thousands of samples. We speculate that they could

be improved significantly by a one-time training with a

much larger set of samples, e.g., in the order of millions,

as routinely used by large service providers (a scale that we

cannot presently afford).

REFERENCES

[1] A. Bartoli, G. Davanzo, and E. Medvet, “The reaction time
to web site defacements,” Internet Computing, IEEE, vol. 13,
no. 4, pp. 52–58, 2009.

[2] N. Leontiadis and T. Moore, “Measuring and analyzing
search-redirection attacks in the illicit online prescription drug
trade,” Proc. USENIX Security, 2011.

[3] E. Sorio, A. Bartoli, and E. Medvet, “A look at hidden web
pages in italian public administrations,” in Computational As-
pects of Social Networks (CASoN), 2012 Fourth International
Conference on, pp. 291–296, IEEE, 2012.

[4] A. Bartoli, G. Davanzo, and E. Medvet, “A framework for
large-scale detection of web site defacements,” ACM Trans-
actions on Internet Technology (TOIT), vol. 10, no. 3, p. 10,
2010.

[5] H. Huang, L. Qian, and Y. Wang, “A SVM-based Technique
to Detect Phishing URLs,” Information Technology Journal,
2012.

[6] A. Le and A. Markopoulou, “PhishDef: URL Names Say It
All,” in Proceedings IEEE INFOCOM, 2010.

[7] L. K. Saul, S. Savage, G. M. Voelker, and L. Jolla, “Iden-
tifying Suspicious URLs: An Application of Large-Scale
Online Learning,” in Proceedings of the 26th International
Conference on Machine Learning, 2009.

[8] J. Ma, L. Saul, S. Savage, and G. Voelker, “Beyond blacklists:
learning to detect malicious web sites from suspicious URLs,”
Proceedings of the 15th ACM . . . , 2009.

[9] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Learning
to detect malicious URLs,” ACM Transactions on Intelligent
Systems and Technology, vol. 2, no. 3, 2011.

[10] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: A
Fast Filter for the Large-Scale Detection of Malicious Web
Pages,” in World Wide Web Conference.

[11] C. Whittaker, B. Ryner, and M. Nazif, “Large-Scale Auto-
matic Classification of Phishing Pages,” in Network and IT
Security Conference: NDSS 2010, 2008.

[12] A. Blum, B. Wardman, T. Solorio, and G. Warner, “Lexical
feature based phishing URL detection using online learning,”
Proceedings of the 3rd ACM workshop on Artificial intelli-
gence and security - AISec ’10, p. 54, 2010.

247

