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Abstract: The huge diffusion of malware in mobile platform is plaguing users. New malware proliferates at a very fast
pace: as a matter of fact, to evade the signature-based mechanism implemented in current antimalware, the
application of trivial obfuscation techniques to existing malware is sufficient. In this paper, we show how
the application of several morphing techniques affects the effectiveness of two widespread malware detection
approaches based on Machine Learning coupled respectively with static and dynamic analysis. We demon-
strate experimentally that dynamic analysis-based detection performs equally well in evaluating obfuscated
and non-obfuscated malware. On the other hand, static analysis-based detection is more accurate on non-
obfuscated samples but is greatly negatively affected by obfuscation: however, we also show that this effect
can be mitigated by using obfuscated samples also in the learning phase.

1 Introduction

Malware targeting mobile platforms has been
spreading fastly and largely in the last years. This is
an natural consequence of two facts, which constitute
strong incentives for many attackers: (i) users store
more and more sensitive and private information in
their mobile devices and (ii) mobiles, and Android-
bases in particular, are becoming the most used de-
vices: in March 2017, Android usage hit 37.93%
while Windows on computers hit 37.91%1.

This is the reason why antimalware vendors pro-
pose free and commercial solutions with the aim to
mitigate this widespread phenomenon, but the current
signature-based approach is not sufficient to protect
users against the new threats developed by malware
writer (Canfora et al., 2015b; Rastogi et al., 2013a;
Zheng et al., 2013). As a matter of fact, signature-
based malware detection (the most common tech-
nique adopted by mobile antimalware) is often inef-
fective (Cimitile et al., 2017). Moreover it is costly:
the process for obtaining and classifying a malware
signature is laborious and time-consuming.

1http://gs.statcounter.com/os-market-share#
monthly-201703-201703-map

In the last years, the research community has de-
veloped several methods in order to identify whether
a mobile application exhibits a malicious behaviour:
basically the approaches considered are based on
static analysis (the detection process does not require
the execution of the application) or on dynamic anal-
ysis (the detection process requires the application to
run in order to identify the maliciousness) (Tam et al.,
2017).

While several research papers evaluate the effec-
tiveness of the signature-based detection provided by
current antimalware technologies (Zheng et al., 2013;
Ramachandran et al., 2012; Rastogi et al., 2013a,b),
in this paper our aim is to evaluate the effectiveness
of the techniques considered by researchers against
the common code morphing techniques employed by
malware writers. In order to demonstrate this, we
evaluate two recent approaches based on Machine
Learning techniques operating on, respectively, fea-
tures derived from static analysis (Canfora et al.,
2015a) and dynamic analysis (Canfora et al., 2015c)
against a set of widespread morphing techniques. The
considered approaches are representative of the many
Machine Learning-based malware detection systems
which have been recently proposed (e.g., Xue et al.



(2017); Martinelli et al. (2017); Ferrante et al. (2016);
Medvet and Mercaldo (2016); Tam et al. (2017);
Backes and Nauman (2017); Demontis et al. (2017)).

The paper poses the following research question:
to which degree the widespread obfuscation tech-
niques affect the effectiveness of state-of-the-art de-
tection approaches for malware detection? We at-
tempt to answer this question by means of a thorough
experimental analysis involving a real-world dataset
composed by 3500 legitimate and 3500 real-world
malware applications and 8 different and Android-
specific morphing techniques.

2 Related work

There is an increasing interest in applying Ma-
chine Learning-based techniques to the problem of
Android Malware detection: we here briefly survey
the most recent ones, and other non ML-based signifi-
cant ones, which explicitly consider code obfuscation.

A framework able to inject a set of morphing tech-
niques ha been proposed by Rastogi et al. (2013a)
with the aim to evaluate the current antimalware tech-
nologies against morphed variants of malware. The
main outcome of the paper is that all the studied anti-
malware software are vulnerable to trivial code trans-
formations.

Rastogi et al. (2014) evaluate ten antimalware
tools using six original and morphed mobile malware
belonging to six different families. The authors con-
clude that the antimalware are susceptible to common
widespread evasion techniques.

Suarez-Tangil et al. (2016a) propose DroidSieve,
an Android malware classifier based on static analy-
sis, and identify two high-level classes: (i) resource-
centric features which are derived from resources
used by the app and (ii) syntactic features which
are derived from the code and metadata of mo-
bile applications. The proposed approach con-
sider obfuscation-invariant features and artefacts in-
troduced by obfuscation mechanisms used by mobile
malware writers.

Alterdroid (Suarez-Tangil et al., 2016b) is a mal-
ware analysis framework consisting in the analysis of
the behavioral differences between the original appli-
cation and a set of automatically generated versions of
it, where a number of modifications have been care-
fully injected (the so-called variants). In addition, Al-
terdroid performs a dynamic analysis (i.e., every app
was executed over a time span equal to 120 seconds)
to identify the malware.

O’kane et al. (2016) investigate the optimal set of
instruction being executed to identify obfuscated An-

droid malware using the SVM classifier. They find a
set of instructions that are good indicators of malware
and determine how long the program needs to run in
order to obtain an accurate classification. They obtain
an average accuracy equal to 84.4%.

The RevealDroid tool (Garcia et al., 2015) is
stated to be obfuscation resilient thanks to a set of fea-
tures including sensitive APIs and intents usage and
information flows. The effectiveness of the selected
features is evaluated using two different simple classi-
fiers, which obtain an accuracy ranging between 93%
and 96% in malware detection.

3 Machine Learning-based malware
detection

We consider two forms of detection based on Ma-
chine Learning techniques applied on data derived
from static and dynamic analysis, i.e., on sequences
of opcodes and system calls, respectively. We build
our study on two state-of-the-art approaches (Canfora
et al., 2015a,c) which we briefly describe in the fol-
lowing sections.

In both cases, the approach consists of a classifi-
cation phase, in which an input application a is clas-
sified as malware or trusted, and a learning phase in
which a classifier is trained basing on two sets AT
and AM including, respectively, trusted and malware
applications. In both phases, a numeric feature vec-
tor is computed out of the app a by means of a pre-
processing step. All the procedures are described be-
low.

3.1 Static analysis

The pre-processing of an app a starts by extracting the
.dex file from a packed as an .apk file. Then, several
files containing the machine level instructions, each
consisting in an opcode and its parameters, are ob-
tained from the .dex file by means of decompilation.
From these files, a list of sequences of opcodes (with-
out the parameters), where a sequence corresponds to
a method of a class in the app, is extracted. Finally,
the frequency f (a,o) of each ngram o occurring in the
sequences of the list is computed, n being a parame-
ter of the method. The resulting vector is the initial
feature vector for a.

In the learning phase, an feature selection proce-
dure is performed, since the feature vector obtained
through the pre-processing phase may be remarkably
large. This is done proceeding as follow. For each
ngrams o, its global frequencies relatively to AT (set



of trusted apps) and AM (set of malware apps) are
computed:

f̄M(o) =
1
|AM| ∑

a∈AM

f (a,o) (1)

f̄T (o) =
1
|AT | ∑

a∈AT

f (a,o) (2)

The relative difference d(o) is obtained as:

d(o) =
abs( f̄M(o)− f̄T (o))
max( f̄M(o), f̄T (o))

(3)

The set O of the selected ngrams (and hence the cor-
responding features) is hence built to include the k
ngrams with the highest values of d(o), where k is
a parameter of the method. The ngrams for which
d(o) = 1 (i.e., those ngrams which occur only in
AT and not in AM or viceversa) are not considered
to avoid obtaining a classifier that fails to general-
ize. Furthermore, all the ngrams in O that are sub-
sequences of another ngram in O are discarded—this
way, redundant information is removed. Finally, only
the k′ < k ngrams in O with the highest d(o) are re-
tained, where k′ is a parameter of the method. At the
end of the learning phase, a binary classifier based on
Support Vector Machine (SVM) with a Gaussian ker-
nel and a cost c = 1 is learned on the dataset deriving
from AT ,AM and the features determined by O.

In the classification phase, the feature vector for
the input app a is first computed considering the fre-
quences of the opcodes in O; then, it is given as in-
put to the trained SVM which outputs a response in
{malware, trusted}.

3.2 Dynamic analysis

In the pre-processing, the system calls invoked by the
app a during the execution are recorded, producing
an execution trace. Then the feature vector is ex-
tracted calculating the frequency over a of each pos-
sible ngram of system calls (w/o the call arguments),
where n is a parameter of the method.

As in the static case, the learning phase starts with
a feature selection procedure. To reduce the number
of features, only the k ngrams with the greatest δs are
selected, with:

δs =

∣∣∣ 1
|AT | ∑a∈AT f (a,s)− 1

|AM | ∑a∈AM f (a,s)
∣∣∣

maxa∈A f (a,s)

where s is an ngram of system calls, A is the union of
AT (set of trusted apps) and AM (set of malware apps),
and k is a parameter of the method. The number of
features is further reduced by computing, for each re-
maining s, the mutual information Is of f (a,s) with

the label of a for any a ∈ A and retaining the k′ fea-
tures with the highest Is, with k′ being a parameter of
the method, resulting in a set S of selected ngrams. At
the end of the learning phase, a binary classifier based
on Support Vector Machine (SVM) with a Gaussian
kernel and a cost c = 1 is learned on the dataset deriv-
ing from AT ,AM and the features determined by S .

In the classification phase the previously selected
features are extracted from the apps in the unlabelled
dataset, on which the trained classifier is applied, re-
ceiving a response label in {malware, trusted}.

4 Experimental evaluation

4.1 Data

We built a dataset of 7000 applications evenly divided
between trusted (AT ) and malware (AM). In particu-
lar, we took a subset of the dataset used in (Canfora
et al., 2015a) in which trusted apps were collected
from Google Play and malware apps from the Drebin
dataset Arp et al. (2014). Furthermore, we built a set
AO of obfuscated malware apps set by applying to
each of the apps in AM all the obfuscation techniques
described in the next section.

For the dynamic analysis detection, we executed
each app on a real Android device for at most 1
minute, during which a tool was simulating random
UI interactions for the whole minute of execution.

4.2 The obfuscation techniques

Android runs Dalvik executables stored in .dex files.
In order to apply transformations to application code,
we obtained the smali (a human readable dalvik byte-
code) representation of the code, using apktool2, a
tool for reverse engineering which allows to decom-
pile and recompile Android applications. apktool is
able to decode resources to nearly original form and
rebuild them after making some modifications. The
smali representation is the target of the transforma-
tions we considered.

We designed, implemented, and publicly re-
leased3 a Java tool able to apply a set code modifi-
cations to smali representation in an automated way.

We applied all the following morphing tech-
niques:

1. Disassembling & Reassembling. The compiled
Dalvik bytecode in classes.dex of the applica-

2http://ibotpeaches.github.io/Apktool/
3https://github.com/faber03/

AndroidMalwareEvaluatingTools



tion package may be disassembled and reassem-
bled through apktool. This allows various items in
a .dex file to be represented in a different way. In
this way signatures relying on the order of differ-
ent items in the .dex file will likely be ineffective
with this transformation.

2. Repacking. Every Android application contains a
developer signature key that will be lost after dis-
assembling the application and then reassembling
it. In order to create a new key we consider the
signapk4 tool to embed a new signature key in the
reassembled app to avoid detection signatures that
match the developer keys.

3. Changing package name. Each Android appli-
cation is identified by a unique package name.
This transformation is focused at renaming the ap-
plication package name in both the Android Man-
ifest and all the classes of the app, to elude detec-
tion by signatures based on package name.

4. Identifier renaming. To avoid detection signa-
tures relying on identifier names, this transforma-
tion renames each package name and class name
by using a random string generator, in both An-
droid Manifest and smali classes, handling re-
named classes invocations.

5. Data Encoding. The dex files contain all the
strings and arrays used in the code. Strings could
be used to create detection signatures to identify
malware. To elude such signatures, this transfor-
mation encodes strings with a Caesar cipher with
a fixed key equal to 3. This technique is also ap-
plied to the code of the so-called metamorphic
malware Borello and Mé (2008); Canfora et al.
(2014). The original string will be restored during
application run-time.

6. Call indirections. Some detection signatures
could exploit the call graph of the application.
To evade such signatures we designed a transfor-
mation which mutates the original call graph, by
modifying every method invocation in the smali
code with a call to a new method inserted by the
transformation which simply invokes the original
method.

7. Code Reordering. This transformation is aimed
at modifying the instructions order in smali meth-
ods. A random reordering of instructions has been
accomplished by inserting goto instructions with
the aim of preserving the original runtime exe-
cution trace. Considering that the reordering is
random, this is considered the strongest obfusca-
tion technique able to alter the signature provided

4https://code.google.com/p/signapk/

by current antimalware technologies You and Yim
(2010). The transformation was applied only to
methods that do not contain any type of jumps
(i.e., if, switch, recursive calls).

8. Junk Code Insertion. These transformations in-
troduce code sequences that have no effect on the
business logic of applications. This is considered
a weak technique, for this reason usually antimal-
ware technologies can be able to identify samples
obfuscated only with this technique Collberg et al.
(2003). The transformation provides three differ-
ent junk code insertions: (i) insertion of nop in-
structions into each method, (ii) insertion of un-
conditional jumps into each method, and (iii) al-
location of three additional registers on which
garbage operations are performed.

4.3 Procedure and results

We performed a 10-fold cross validation, i.e., we:
(i) randomly split the sets AT and AM in 10 par-
tition; (ii) built the sets AT and AM by including
9 on the 10 partitions in AT and AM , respectively;
(iii) we performed the learning phase on AT and AM ,
as described in Sections 3.2 and 3.2; (iv) for each
a ∈ AT ∪AM ∪AO and not in AT ∪AM (i.e., for each
app in the testing set), we applied the learned classi-
fier.

We repeated steps ii, iii, and iv 10 times by vary-
ing the excluded partition. For the dynamic case, we
collected 10 execution traces for each app (used both
in the learning and classification phases, with traces
for the same app randomly distributed in the learn-
ing and testing sets) in order to mitigate the impact of
fortunate and unfortunate conditions during the exe-
cution. We set n = 3, k = 5000, and k′ = 2000 for the
static case and n = 3, k = 2000, and k′ = 750 for the
dynamic case, basing on the results of the two corre-
sponding original papers.

We measured the classification effectiveness in
terms of Accuracy, i.e., the percentage of correctly
classified apps, False Positive Rate (FPR), i.e., the
percentage of trusted apps classified as malware, and
False Negative Rate (FNR), i.e., the percentage of
malware apps classified as trusted. All the results are
shown in Table 1: FNR is cast as FNR¬O and FNRO,
i.e., measured on non-obfuscated malware apps (a ∈
AM \AM) and obfuscate malware apps (a ∈ AO), re-
spectively. Figure 1 shows True Positive Rate (TPR)
and True Negative Rate (TNR) indexes for each of
the 10 repetitions—TNR is the average of TNR¬O and
TNRO obtained in the repetition.

It can be seen from Table 1 that both methods
(i.e., static anlysis-based and dynamic analysis-based



Table 1: Mean µ and standard deviation σ of FNR and
FPR across the 10 repetitions in the two learning scenarios:
without (above) or with (below) obfuscated malware apps
in the training set.

FPR FNR¬O FNRO

Method µ σ µ σ µ σ

w
/o Static 3.7 1.3 2.6 0.8 89.8 0.2

Dyn. 9.9 1.0 5.8 1.4 7.5 0.3

w
/ Static 6.6 1.8 0.6 0.1 0.1 0.1

Dyn. 10.7 1.0 3.2 0.2 4.5 0.2
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Figure 1: Effectiveness for each of the 10 repetitions in term
of TPR and TNR of both static and dynamic analysis. Re-
sults are shown in the case with and without obfuscated mal-
ware in the training set.

detection) are effective in classifying non-obfuscated
apps, FPR and FNR¬O being lower than 10%. Static
analysis is indeed more accurate, with an FPR < 4%
and FNR¬O < 3%, whereas dynamic analysis scores
≈ 10% and 6% respectively: the accuracy of the lat-
ter is negatively affected by the variability of execu-
tions which essentialy results in noisy data. These
figures are consistent with the results of Canfora et al.
(2015a) and Canfora et al. (2015c).

The most interesting finding concerns, however,
the impact of obfuscation on malware detection. By
observing the difference between FNR¬O and FNRO
in the two topmost rows of Table 1, it can be seen
that the effectiveness of static analysis-based detec-
tion is severely affected by obfuscation, whereas dy-
namic analysis-based effectiveness is not significantly
affected. For static method, FNRO ≈ 90%, i.e., 9 on
10 malware apps are wrongly classified as trusted.
This can be explained by the fact that the obfuscation

techniques applied in this study heavily modify fre-
quency and order of the opcodes in an app, especially
in the case of Call indirections, Code reordering, and
Junk code insertion. This leads to a completely dif-
ferent distribution of ngrams that is no longer recog-
nized by the static classifier. Instead, execution traces
of an obfuscated app are very similar to their non-
obfuscated counterpart, therefore the dynamic classi-
fier is not influenced by obfuscation. In essence, this
experiment confirms the high level intuition that dy-
namic analysis-based detection is much more robust
to code obfuscation than static one.

4.3.1 Learning on obfuscated malware

Basing on the results of our first experimentation, we
decided to investigate if the scarce robustness to ob-
fuscation of the static analysis-based detection may be
mitigated. In other words, we tried to address the high
level research question: are features based on ngrams
of obcodes able to capture the essence of malware
even in case of obfuscation? To answer this question
experimentally, we modified the experimental proce-
dure such that the learning set AM consists of an even
number of apps from the set AM of non-obfuscated
malware apps and from the set AO of obfuscated mal-
ware apps, with |AM| = |AT |—again, apps used for
learning are never used for assessing classification ef-
fectiveness.

Table 1 presents—in the two bottom rows—the
results in terms of FPR, FNR¬O, and FNRO of the
two methods with the obfuscated malware apps in the
learning set.

It can be seen that simply making obfuscated mal-
ware available to the learning process makes static
analysis-based detection clearly robust to obfusca-
tion: FNR¬O and FNRO are both very low (0.6%
and 0.1%, respectively), whereas FPR is only slightly
higher than with the case of non-obfuscated only
learning. In other words, features based on ngrams
of obcodes are adequate for capturing the essence of
malware regardless of obfuscation, but samples of ob-
fuscated malware must be available for the learning
phase.

Concerning the dynamic method, effectiveness in-
dexes deviate only moderately with, in general, lower
FNR and higher FPR.

5 Conclusion and future work

In this work, we compared the robustness to code
obfuscation of two different malware detection meth-
ods, based on Machine Learning techniques applied



on features deriving from static (opcodes in machine
leavel app code) and dynamic (system calls in app
execution trace) analysis. The underlying assump-
tion is that obfuscating the code of an app should
leave its execution trace almost unchanged, making
a dynamic classifier robust to obfuscation, but should
change completely the sequence of opcodes deriving
from its code, making a static classifier totally inef-
fective. We experimentally validated this assumption
by applying two state-of-the-art methods to legitimate
apps, malware apps, and malware apps subjected to
8 different code morphing techniques: results show
that static analysis-based detection is essentially un-
effective on obfuscated malware. We also showed
that static detection may be made robust to obfusca-
tion by making obfuscated malware apps available for
the learning. In the future, we plan to study if and to
which degree static and dynamic detection are able to
correctly classify apps subjected to new code morph-
ing techniques, i.e., techniques for which no samples
were available in the learning phase.
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