
Learning Text Patterns 
using
Separate-and-Conquer GP

A.Bartoli, A.De Lorenzo,
E.Medvet, F.Tarlao
University of Trieste, Italy



The Problem (I)

● Entity extraction from unstructured text
● Syntactic pattern
● Specified only by examples of desired

(un)extractions

● Generate regular expression automatically
● Which “generalizes” the examples



● Multiple patterns possibly needed

The Problem (II)



Regex learning by examples

● Long-standing problem

● Much research on classification
● Little research on extraction



Regex:
Classification vs Extraction

Eric and Fabiano: During our month-end 
processes I have researched deal #549162.1.  
Could not find anything useful. Sorry,

Pinco Pallo Executive Assistant to Ucio 
713.853.5984 713.646.8381 (fax)
pinco.pallo@malelab.it       \\DIA UniTS\\ 
<info@malelab.it> on 12/04/2000 

r
CLASSIFIER

YES

r
EXTRACTOR

pinco.pallo@malelab.it



Regex learning by examples

● Long-standing problem

● Much research on classification
● Little research on extraction

● Hardly useful for “practical text processing”
○ Example: input string is a sequence of 20 symbols

and symbols are bits



Our work in a nutshell:
Interface

● Input:
○ Unstructured text file
○ Annotated with all the desired extractions

● Output:
○ Java/Javascript-compatible regex
○ Composed of multiple regexes “glued” by OR (“|”)
○ Each capturing one pattern
○ r1 | r2 | r3



Note

● Input:
○ Unstructured text file
○ Annotated with all the desired extractions

● No hints on patterns
○ How many
○ How they look like

● No hints on regexes

● Everything “discovered automatically”



Our work in a nutshell: 
Implementation

● GP-based system
○ Suitable for “practical problems”
○ “Much better” than earlier proposals

● Unable to cope with multipattern

● Modify & Extend for multipattern



Separate-and-Conquer():
Basic Idea (I)

● GP-Search() optimizes:
○ Extract only correct snippets

(precision)
○ Extract all snippets that have to be extracted

(recall)

● Tailor GP-Search() to:
○ Extract only correct snippets

(precision)
○ Extract all snippets that have to be extracted

(recall)



Separate-and-Conquer():
Basic Idea (II)

● GP-Search() generates regex:
○ Perfect precision
○ Misses extractions (non-perfect recall)

1. r := GP-Search(Training)
2. Remove from Training strings extracted by r
3. Repeat until Training is empty

4. Glue all r by OR



Separate-and-Conquer():
More details

resultSet := ∅;
Loop:

regex := GP-Search(Training);
if Precision(regex,Training) == 1

then resultSet += regex;
else exit-Loop;

Training := Training - extractions(regex,Training);
if Training == ∅ then exit-Loop

Glue resultSet by OR



GP-Search()

● Individual: regex (as a tree)
● Terminals: Training set-dependent (tokens)
● Initial population: Training set-dependent

○ Generalizations of desired extractions
○ Random

● Structural diversity
● Multiobjective fitness

○ Precision
○ Accuracy
○ Length (to be minimized)

● Multi-layered ranking



Full procedure

● Learning = Training + Validation

1. Execute J Separate-and-Conquer(Training)

2. Compute F-measure of J regexes on Learning

3. Choose regex with highest F-measure



Evaluation: Datasets

● Quite challenging
● Bills:

○ 600 portions of US Congress bills
○ ≈ 3000 Extractions: date in several formats

● Tweets:
○ 50000 tweets
○ ≈ 70000 Extractions: URLs, Hashtags, Twitter citations

● Headers:
○ 100 email headers (raw format)
○ ≈ 1500 Extractions: IP addresses, dates

● Bills available on our website



A glimpse at extractions...



● Baseline: 

● “Much better” than earlier regex learning proposals
(for text extraction)

Evaluation: Procedure

● For each dataset, 15 random tasks
○ 5 Training sets for each of 3 sizes

(25, 50, 100 extractions)
● J = 32

○ 500 individuals, 1000 generations



Key results: F-measure

● F-measure
○ Significant improvement
○ Absolute values “practically useful”



Key results: Multipattern

● Effectively discovers different patterns
● ...without exaggerating

○ Targets would be 3 / 2 / 3



Key results: Computational effort

● Less character evaluations (1010)
● Usually (but not always) smaller 

execution time
○ tens of minutes



http://regex.inginf.units.it

● Source code will be made public soon 
(GitHub)



Thanks for your attention

University of Trieste, Italy
http://machinelearning.inginf.units.it

@MaleLabT
s 

https://twitter.com/MaleLabTs
https://twitter.com/MaleLabTs
https://twitter.com/MaleLabTs
https://twitter.com/MaleLabTs

