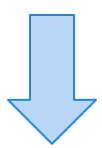
Learning Text Patterns using Separate-and-Conquer GP

A.Bartoli, A.De Lorenzo, E.Medvet, F.Tarlao *University of Trieste, Italy*

The Problem (I)

- Entity extraction from unstructured text
- Syntactic pattern
- Specified only by examples of desired (un)extractions



- Generate regular expression automatically
- Which "generalizes" the examples

The Problem (II)

Multiple patterns possibly needed

```
18.12.2013
2007/01/09
23/03/2009
14-09-2011
23, July_2001
December_31,_2001
2000.01.27
Dec_31,_1991
1997/12/31
```

Regex learning by examples

Long-standing problem

- Much research on classification
- Little research on extraction

Regex: Classification vs Extraction

```
Eric and Fabiano: During our month-end
processes I have researched deal #549162.1.
Could not find anything useful. Sorry,
Pinco Pallo Executive Assistant to Ucio
713.853.5984 713.646.8381 (fax)
pinco.pallo@malelab.it \\DIA UniTS\\
<info@malelab.it> on 12/04/2000
                           EXTRACTOR
  CLASSIFIER
                     pinco.pallo@malelab.it
```

Regex learning by examples

Long-standing problem

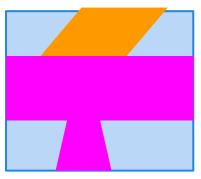
- Much research on classification
- Little research on extraction

- Hardly useful for "practical text processing"
 - Example: input string is a sequence of 20 symbols and symbols are bits

Our work in a nutshell: Interface

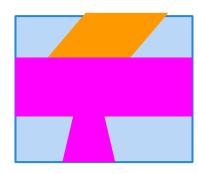
- Input:
 - Unstructured text file
 - Annotated with all the desired extractions

- Output:
 - Java/Javascript-compatible regex
 - Composed of multiple regexes "glued" by OR (" | ")
 - Each capturing one pattern
 - o r1 | r2 | r3



Note

- Input:
 - Unstructured text file
 - Annotated with all the desired extractions
- No hints on patterns
 - How many
 - How they look like
- No hints on regexes



Everything "discovered automatically"

Our work in a nutshell: Implementation

- GP-based system
 - Suitable for "practical problems"
 - "Much better" than earlier proposals

Computer

Automatic Synthesis of Regular Expressions from Examples

Unable to cope with multipattern

Modify & Extend for multipattern

Separate-and-Conquer(): Basic Idea (I)

- GP-Search() optimizes:
 - Extract only correct snippets (precision)

Computer

Automatic Synthesis of Regular Expressions from Examples

- Extract all snippets that have to be extracted (recall)
- Tailor GP-Search() to:
 - Extract only correct snippets (precision)
 - Extract all snippets that have to be extracted (recall)

Separate-and-Conquer(): Basic Idea (II)

- GP-Search() generates regex:
 - Perfect precision
 - Misses extractions (non-perfect recall)

- r := GP-Search(Training)
- 2. Remove from Training strings extracted by r
- 3. Repeat until Training is empty
- 4. Glue all r by OR

Separate-and-Conquer(): More details

```
resultSet := \emptyset;
Loop:
   regex := GP-Search(Training);
   if Precision(regex, Training) == 1
     then resultSet += regex;
     else exit-Loop;
  Training := Training - extractions(regex, Training);
   if Training == ∅ then exit-Loop
Glue resultSet by OR
```

GP-Search()

- Individual: regex (as a tree)
- Terminals: Training set-dependent (tokens)
- Initial population: Training set-dependent
 - Generalizations of desired extractions
 - Random
- Structural diversity
- Multiobjective fitness
 - Precision
 - Accuracy
 - Length (to be minimized)
- Multi-layered ranking

Full procedure

- Learning = Training + Validation
- 1. Execute *J* Separate-and-Conquer(Training)
- 2. Compute F-measure of J regexes on Learning
- 3. Choose regex with highest F-measure

Evaluation: Datasets

- Quite challenging
- Bills:
 - 600 portions of US Congress bills
 - ≈ 3000 Extractions: date in several formats
- Tweets:
 - 50000 tweets
 - ≈ 70000 Extractions: URLs, Hashtags, Twitter citations
- Headers:
 - 100 email headers (raw format)
 - ≈ 1500 Extractions: IP addresses, dates
- Bills available on our website

A glimpse at extractions...

Bills	Tweets	Headers
18.12.2013	@joshua_seaton	10.236.182.42
2007/01/09	#annoyed	Thu,_12_Jan_2012_04:33:340800
23/03/2009	http://t.co/Bw7A5sbI	93.174.66.112
14-09-2011	#Anonymous	209.85.216.53
23,July_2001	@YourAnonNews	24_Jan_2011_09:36:000000
December_31,_2001	@zataz	27_Apr_2011_09:31:01.0953
2000.01.27	$@_{ t SweetDiccWilly}$	Mon_Oct_1_13:04:58_2012
Dec_31,_1991	http://t.co/bYxJ9NAE	Mon,_01_Oct_2012_12:05:40_+0000
1997/12/31	#OpBlitzkrieg	151.76.78.168
1999-01-19	http://t.co/GrqKGECz	Mon,_1_0ct_2012_14:04:58_+0200

Evaluation: Procedure

- For each dataset, 15 random tasks
 - 5 Training sets for each of 3 sizes
 (25, 50, 100 extractions)
- J = 32
 - 500 individuals, 1000 generations
- Baseline: Computer

Automatic Synthesis of Regular Expressions from Examples

 "Much better" than earlier regex learning proposals (for text extraction)

Key results: F-measure

	Num. of	Our method		Baseline			
Dataset	slices	Fm			Fm		$\Delta \mathrm{Fm}$
Bills	25	0.49			0.24		104%
	50	0.62			0.27		129%
	100	0.73			0.39		87%
Tweets	25	0.94			0.87		8%
	50	0.96			0.85		13%
	100	0.99			0.90		10%
Headers	25	0.79			0.41		93%
	50	0.90			0.44		104%
	100	0.90			0.54		67%

- F-measure
 - Significant improvement
 - Absolute values "practically useful"

Key results: Multipattern

	Num. of	Our method			Baseline					
Dataset	slices		Fm		P			Fm		$\Delta \mathrm{Fm}$
Bills	25		0.49		3.2			0.24		104%
	50		0.62		4.0			0.27		129%
	100		0.73		4.6			0.39		87%
Tweets	25		0.94		2.4			0.87		8%
	50		0.96		2.6			0.85		13%
	100		0.99		3.0			0.90		10%
Headers	25		0.79		3.2			0.41		93%
	50		0.90		3.6			0.44		104%
	100		0.90		3.6			0.54		67%

Effectively discovers different patterns

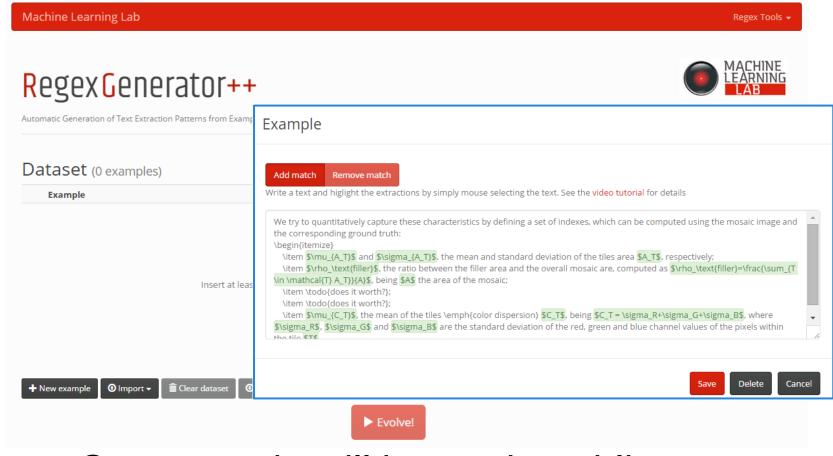
- ...without exaggerating
 - Targets would be 3 / 2 / 3

Key results: Computational effort

	Num. of	Our method			Baseline				
Dataset	slices	Fn	L	CE		Fm		CE	$\Delta { m Fm}$
Bills	25	0.49	9	2.3		0.24		2.5	104%
	50	0.69	2	6.9		0.27		6.9	129%
	100	0.73	3	11.3		0.39		11.6	87%
Tweets	25	0.9	1	0.6		0.87		1.1	8%
	50	0.9	3	1.6		0.85		2.1	13%
	100	0.99	9	3.2		0.90		4.1	10%
Headers	25	0.79	9	4.6		0.41		5.1	93%
	50	0.9)	7.6		0.44		7.7	104%
	100	0.9)	15.1		0.54		15.1	67%

- Less character evaluations (10¹⁰)
- Usually (but not always) smaller execution time
 - tens of minutes

http://regex.inginf.units.it



 Source code will be made public soon (GitHub)

Thanks for your attention

University of Trieste, Italy

http://machinelearning.inginf.units.it

@MaleLabT