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Abstract. TCP is one of the fundamental components of the Internet.
The performance of TCP is heavily dependent on the quality of its round-
trip time (RTT) estimator, i.e. the formula that predicts dynamically the
delay experienced by packets along a network connection. In this paper we
apply multi-objective genetic programming for constructing an RTT esti-
mator. We used two different approaches for multi-objective optimization
and a collection of real traces collected at the mail server of our University.
The solutions that we found outperform the RTT estimator currently used
by all TCP implementations. This result could lead to several applications
of genetic programming in the networking field.

1 Introduction

Genetic programming is a powerful framework for coping with problems in which
finding a solution is difficult but evaluating the performance of a candidate solu-
tion is reasonably simple [12,5]. Many engineering problems exhibit this feature
and may thus greatly benefit from genetic programming techniques. Real-world
engineering problems, on the other hand, can only be solved based on a trade-
off amongst multiple and often conflicting performance objectives. Several ap-
proaches for such multi-objective optimization problems have been proposed in
evolutionary computing [7], mostly for genetic algorithms [10,16,15] and more
recently also for genetic programming [9,14].

In this paper we apply two techniques for multi-objective optimization in
genetic programming to an important real-world problem in the Internet domain:
the construction of a round-trip time (RTT) estimator for TCP [11,4,13]. TCP
(Transmission Control Protocol) is a fundamental component of the Internet as
it constitutes the basis for many applications of utmost importance, including
the World Wide Web and the e-mail just to mention only the most widely known.
The TCP implementation internally maintains a dynamic estimator of the round-
trip time, i.e., the time it takes for a packet to reach the other endpoint of a
connection and to come back. This component has a crucial importance on the
overall TCP performance [11,4]. The construction of an RTT estimator is a
particularly challenging problem for genetic programming because, as we shall
see in more detail, an RTT estimator must satisfy two conflicting requirements,
there are many solutions that are optimal for only one of the two requirements
and any such solution performs poorly for the other one.
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We construct RTT estimators via multi-objective genetic programming and
evaluate their performance on real traces collected at the mail server of our
University. The formulas that we found outperform the RTT estimator used in
all existing TCP implementations [11] — including those in Windows 2000/XP,
Linux, Solaris and so on. We believe this result is particularly significant and
could lead to several interesting developments and applications of genetic pro-
gramming in the networking field.

The outline of the paper is as follows. The next section presents in a first part
the RTT estimation problem in detail and introduces the fundamental concepts
and techniques in multi-objectives optimization in a second part. Section 3 de-
scribes several multi-objective strategies used on our problem. Section 4 presents
the experimental procedure used to discover new formulas which estimate RTT.
Section 5 discusses the behavior of the different multi-objectives policies as well
as the performances of the formula found by Genetic Programming. Finally con-
clusions are drawn.

2 RTT Estimation Problem

The Transmission Control Protocol (TCP) provides a transport layer, base of
many other protocols used in the most common Internet applications, like HTTP
(i.e., the Web), FTP (files transfer) and SMTP/POP3 (e-mail). TCP was defined
in [1,2]. We provide in the following only the necessary background for this
work. More details on the TCP implementation can be found in many places,
for example, in [3].

TCP provides applications with a reliable and connection-oriented service.
This means that two remote applications can establish a connection between

Fig. 1. An example of retransmission for the case (i)
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them and that bytes inserted at one end will reach the other end reliably, that
is, without losses, in order and without duplicates.

To ensure reliable delivery of packets in spite of packet losses, that may occur
at lower levels of the Internet protocol stack, the TCP implementation employs
internally a retransmission scheme based on acknowledgments as follows. Con-
sider a connection between hosts A and B. Whenever either of them, say A,
sends a packet S to the other, it sets a retransmission timeout (RTO). When-
ever B receives a packet S, it responds with another packet ack(S) for notifying
the other end that S has been indeed received. If A does not receive ack(S)
before RTO expires, then A resends S. Note that when RTO expires only one of
the following is true, but A cannot tell which one: (i) S has been lost; (ii) S was
received by B but ack(S) is lost; (iii) neither S nor ack(S) was lost and RTO
expired too early. The fact that A resends S whenever RTO expires means that
the TCP implementation assumes that case (i) always holds. The three cases
described above are illustrated in Figure 1 and 2.

Fig. 2. Examples of retransmission for case (ii) and (iii)

Each TCP implementation selects RTO on a per-connection basis based on a
formula that depends on the round-trip time (RTT) time, i.e., the time elapsed
between the sending of a packet S and the receiving of the corresponding ac-
knowledgment ack(S). RTO should be larger than RTT to not incur in case (iii)
above too often, which would waste resources at the two endpoints and within
the network. On the other hand, RTO should not be much larger than RTT,
otherwise it would take an excessively long time to react to case (i) which would
result in a high latency at the two connection endpoints.

RTT varies dynamically, due to the varying delays experienced by packets
along the route to their destination. Moreover, when sending packet Si the cor-
responding RTT value measuredRTTi is not yet known. The TCP implementa-
tion thus maintains dynamically, on a per-connection basis, an estimated RTT
and selects RTO for Si based on the current value for estimatedRTTi. This
component of TCP has a crucial importance on performance of TCP [4].

Virtually all the TCP implementations – including those in Linux, Windows
2000/XP, Solaris and so on – maintain estimatedRTTi according to an algorithm
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due to Jacobson [11]. This algorithm constructs estimatedRTTi based on the pre-
vious estimate estimatedRTTi−1 and the previous value actually observed
measuredRTTi−1:

estimatedRTTi = (1 − k1) estimatedRTTi−1 + k1 measuredRTTi−1 (1)

Constant k1 is set to 1
8 allowing an efficient implementation using fixed-point

arithmetic and bit shifting. Initially, estimatedRTT is set to the first available
measuredRTT . Another component of the Jacobson algorithm, not shown here
for space constraints, constructs RTOi based on estimatedRTTi.

In this work we are concerned with RTT estimation only, i.e., we seek for
methods for estimating RTT that are different from formula 1 and hopefully
better. The construction of estimatedRTT has two conflicting objectives to op-
timize. One would like to minimize the number of underestimates (which may
cause premature timeout expiration) while at the same time minimizing the av-
erage error (which may cause excessive delay when reacting to a packet loss). The
problem is challenging because optimizing the former objective is very simple
— any very large estimation would work fine — but many excellent solutions
from that point of view are very poor from the point of view of the average
error.

Fig. 3. Sample of RTT values for consecutive connections

An example of the sequence of RTT values measured in TCP connections is
given in Figure 3 above. It is easy to realize that predicting the next value of RTT
based on the past measurements, with a small error and few underestimates, is
hard. A more complete characterization of real RTT traces can be found, for
example, in [3].
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3 Multi-objective Approaches for RTT Estimation

3.1 Multi-objective Optimization

We denote by Ω the space containing all candidate solutions to the given prob-
lem, RTT estimation in our case. In a multi-objective optimization problem
(MOP) we want to find a candidate solution −→x ∈ Ω which optimizes a vec-
tor of k objective functions: −→

f (−→x ) = [f1(−→x ), f2(−→x ), . . . , fk(−→x )]. The very same
nature of a MOP implies that there may be many points in Ω representing
practically acceptable solutions. It is often the case that the objective functions
conflict with each other [8], e.g., a solution −→x could be better than another so-
lution −→y for some of the k objectives while the reverse could be true for the
remaining objectives.

An important definition for reasoning about solutions of a MOP is the Pareto
dominance relationship:

Definition 1 (Pareto dominance). A solution −→u ∈ Ω is said to dominate
−→v ∈ Ω if and only if:

∀i ∈ {1, 2, . . . , k} , fi(−→u ) ≤ fi(−→v ) and ∃i ∈ {1, 2, . . . , k} , fi(−→u ) < fi(−→v ) (2)

In other words, a solution −→u dominates another solution −→v (denoted −→u �
−→v ) if −→u is better than −→v on at least one objective and no worse than −→v on
all the other objectives. The Pareto optimal set Ps consists of the set of non
dominated solutions: a solution −→u belongs to Ps if there is no other solution
which dominates −→u . A Pareto optimal front Pf contains all objective function
values corresponding to the solutions in Ps (i.e., each point in Ps maps to one
point in Pf ). Of course, in this paper we only consider an approximation of the
Pareto optimal set since Ps is not known. In the following we will not mention
any further that our notions of Ps and Pf are approximations of their unknown
optimal counterparts.

With respect to our RTT estimation problem, we define two objective
functions:

1. We define ObjectiveF itness1(−→u ) as the average of the absolute distances
between the sequence of estimatedRTT constructed by solution −→u and the
corresponding sequence of the measuredRTT actually observed.

2. We define ObjectiveF itness2(−→u ) as the number of times in which the estimat-
edRTT constructed by −→u is lower than the corresponding measuredRTT .

Both functions are evaluated on a set of training data collected as described in
section 4.2. The ideal value for each of the two objective functions is zero. In the
following subsections we describe the approaches that we have applied to this
MOP.

In all the approaches we kept the nondominated solutions found during the
evolutionary search. That is, at each generation we perform the following steps:
(i) store in an external archive all the individuals nondominated by any other
individual in the current population; (ii) drop from the archive individuals dom-
inated by some other member of the archive.
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3.2 Scalarization

This approach consists in combining the k objective functions in a single scalar
objective Fws to be minimized. The combination consists of a weighed sum of
the objective functions with weights fixed a priori [7]:

Fws =
k∑

i=1

wi · fi (3)

Since the relative importance of the objectives cannot be determined univocally
— i.e., with one single choice of weights — we explored several combinations of
weights between [0.0, 2.0] varied in steps of 0.25. In the extreme cases we give
weight 2 to one of the objectives and weight 0 to the other. Note that the sum
of weights is equal to the number of objectives.

3.3 Pareto Dominance

We applied the Pareto dominance technique with a tournament selection scheme
close to that in [9]. In the cited paper an individual is randomly picked from the
population and then compared with a comparison set. Individuals that dominate
the comparison set are selected for the reproduction. We modified this scheme
according to the classical tournament selection, in which a group of n (n ≥ 2)
individuals is randomly picked from the population and the one with the best
fitness is selected. Our scheme works as follows:

1. A tournament set of n (n ≥ 2) individuals is randomly chosen from the
population.

2. If one individual from the set is not dominated by any other individual, then
it is selected.

3. Otherwise an individual is chosen randomly from the tournament set.

4 Experimental Procedure

4.1 RTT Traces

We collected a number of RTT samples on the mail server of our University.
This server handles a traffic in the order of 100.000 messages each day (see
http://mail.units.it/mailstats/). We intercepted the SMTP traffic at the
mail server for 10 minutes every 2 hours for 12 consecutive days (SMTP is
the application-level protocol for sending email messages). The tcpdump soft-
ware intercepted the network packets. The output of this tool was processed by
the tcptrace software which constructed the measuredRTT data for each con-
nection. We then dropped connections with less than 5 RTT values. The tools
that we used are freely available on the web, at http://www.tcpdump.org/ and
http://www.tcptrace.org/ respectively.

The resulting trace consists of 396109 RTT measures in 41521 TCP connec-
tions. These data are grouped in 78 files, for convenience. We chose one of these
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files as training set, consisting of 5737 RTT measures on 611 TCP connections.
The file selected as training set exhibits a large variety of scenarios: small and
large variations, abrupt changes and so on. We used the remaining files, consist-
ing of 390372 RTT measures on 40910 TCP connections, as cross validation set.
The generalization capabilities of the solutions found on the training set have
been evaluated on the cross validation set.

4.2 On Setting the GP Process

The terminal set and the function set is shown in Table 1. We used only arith-
metic operators and a power of 2 as constant in order to obtain formulas that
can be computed efficiently (this is a key requirement in TCP implementations
and is necessary for fair comparison with the RTT estimator developed by Ja-
cobson that is currently used). We allow the resulting formula to include the last
measured RTT (measuredRTTi−1) and the last estimation (estimatedRTTi−1).
We did not include values more far away in the past because the autocorrelation
of RTT traffic is known to decrease very quickly [13].

Table 1. Terminals and functions set

Terminals set 1
2 , 1, measuredRTTi−1, estimatedRTTi−1

Functions set +, −, /, ×

Table 2. Parameter settings

Parameter Setting
Population size 500
Selection Tournament of size 7
Initialization method Ramped Half-and-Half
Initialization depths 2-6 levels
Maximum depth 6
Internal node bias 90% internals, 10% terminals
Elitism 5
Crossover rate 80%
Mutation rate 20%

For the first multi-objective approach we performed 25 independent executions
for each combination of weights for a total of 225 runs, for the Pareto tournament
scheme we performed the same amount of runs in order to carry out a fair
comparison. Each execution starts with a different seed for the random number
generator. We allocate 50 generations for each test. All others parameters are
summarized in the Table 2. We used Sean Lukes Evolutionary Computation
and Genetic Programming Research System (ECJ15) which is freely available
on the web at http://cs.gmu.edu/~eclab/projects/ecj/. We modified and
extended the original API for our needs.



Multi-objective Genetic Programming 177

5 Results

5.1 Comparison of the Multi-objective Approaches

In this section we compare the Pareto fronts generated by multi-objective genetic
programming searchbased on the scalarizationmethod and the Pareto-basedtour-
nament selection. A thorough comparison between the two approaches would
require several indicators as those described in [18,6]. We use a much simpler com-
parison for lack of space and because both approaches exhibit significantly better
performance than our baseline solution — the original algorithm by Jacobson.

We evaluated the performance on the cross validation dataset of the Jacob-
son algorithm and of each solution found with GP and belonging to the Pareto
set. The results are summarized in Figure 4. The most important result is that

Fig. 4. Pareto front generated with the nondominated solutions for each multi-
objective approach

GP found 84 solutions that outperform the Jacobson algorithm, 40 have been
found with the scalarization method and 34 with the Pareto based tournament
selection. This result is particularly significant because it demonstrates the po-
tential effectiveness of GP in an important application domain. Interestingly,
the scalarization method generates solutions that dominate those found with
the Pareto-based tournament for a large range of values of the error average
(from 21.125 to 24.125) except for one solution. Pareto based tournament pro-
vide better solutions in terms of the number of underestimated RTTs.

5.2 Comparison of the RTT Estimators

To gain further insights into the quality of the solutions, in particular regarding
the improvements that can be obtained with respect to the Jacobson algorithm,
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we analyzed the performance on each single file of the cross validation dataset.
We present the results for the Jacobson algorithm and for two solutions located
at the two extremes of the Pareto front: the one giving the best results in terms
of underestimated RTTs (located bottom-right in Figure 4) and the one giving
the best results in terms of average error (located top-left).

Fig. 5. Number of underestimated RTT for each trace file. Best formula found by GP
in terms of average error (left) and in terms of number of underestimated RTTs (right)

Figure 5 describes the results in terms of underestimated RTTs. Each point
in the X-axis corresponds to one file of the cross validation dataset, whereas the
Y-axis is the improvement with respect to Jacobson, in percentage. The hori-
zontal line represents the average improvement across the entire cross validation
dataset. Figure 5-left shows the result for the best formula found by GP in terms
of average error. It can be seen that the average improvement over the Jacobson
algorithm is small (approximately 2%) and that in some files the average error
is worse. Figure 5-right shows the result for the best formula found by GP in
terms of number of underestimates. This case is much more interesting because
the formula found by GP largely outperforms the Jacobson algorithm, with a
56% average improvement (34% of RTTs are underestimated by Jacobson and
only 15% by the formula found by GP). Moreover, a remarkable improvement
can be observed in every trace file.

Figure 6 describes the results in terms of average error, with the same notation
as above. It can be seen the best formula in terms of average error (left figure)
exhibit a 15% average improvement over Jacobson (corresponding to 4.7 ms) and
that some improvement can be observed in every trace file. The best formula
in terms of underestimated RTTs (right figure) exhibits instead essentially the
same performance as that of Jacobson.
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Fig. 6. Error average for each trace file. Best formula found by GP in terms of average
error (left) and in terms of number of underestimated RTTs (right)

6 Concluding Remarks

We applied two radically different multi-objective approaches on an important
real-world problem. We used an a priori method which combines all the objec-
tives into a single one by weighting each objective in advance, and an a posteriori
approach based on a Pareto tournament selection. The quality of the solutions
provided by the two approaches is similar, although solutions obtained with
Pareto-based tournament tended to be more effective in terms of the number
of underestimated RTTs (a particularly critical issue for TCP performance).
The effectiveness of the simple scalarization method was rather surprising and
is probably due to the small number of objectives: covering a sufficiently wide
set of weights remains computationally acceptable.

While this is an interesting result itself, the most significant result consists
in the performance of the formulas found with multi-objective GP: they are
significantly better than those exhibited by the RTT estimator used in all TCP
implementations. This result could lead to several interesting applications of GP
in the networking field — e.g., tailoring RTT estimators to individual hosts,
rather using the same estimator for all hosts; differentiating the estimator based
on the application using TCP, whether web navigation or transmission of email;
and so on.
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