Selfish vs. Global Behavior Promotion in Car Controller Evolution

Jacopo Talamini, Giovanni Scaini, Eric Medvet, Alberto Bartoli

Department of Engineering and Architecture University of Trieste Italy

DTEO workshop @ GECCO, 16/7/2018, Kyoto (Japan)

http://machinelearning.inginf.units.it

Table of Contents

2 Problem and approach

Cooperative tasks:

 Achievement of the goal depends on the cooperation of many agents

Cooperative tasks:

 Achievement of the goal depends on the cooperation of many agents Learning agents controller:

- Neuroevolution: the controller is a Neural Network
- Its topology and weights are optimized by means of Evolutionary Computation

Cooperative tasks:

 Achievement of the goal depends on the cooperation of many agents Learning agents controller:

- Neuroevolution: the controller is a Neural Network
- Its topology and weights are optimized by means of Evolutionary Computation
 - there is a fitness function which drives the evolution

Cooperative tasks:

 Achievement of the goal depends on the cooperation of many agents Learning agents controller:

- Neuroevolution: the controller is a Neural Network
- Its topology and weights are optimized by means of Evolutionary Computation

• there is a fitness function which drives the evolution

Should the fitness award selfish or global behavior?

What does the fitness assess?

Global behavior

Selfish behavior

What does the fitness assess?

Global behavior

+ captures the actual degree of achievement

Selfish behavior

What does the fitness assess?

Global behavior

- + captures the actual degree of achievement
 - long to compute: simulate the full system with many agents

Selfish behavior

What does the fitness assess?

Global behavior

- + captures the actual degree of achievement
 - long to compute: simulate the full system with many agents

Selfish behavior

+ "fast" to compute: simulate just one agent

What does the fitness assess?

Global behavior

- + captures the actual degree of achievement
 - long to compute: simulate the full system with many agents

Selfish behavior

- + "fast" to compute: simulate just one agent
 - a proxy for the actual degree of achievement: how to choose?

An example

Road traffic system:

- Agents: car drivers
- System goal (two-fold):
 - reaching targets (efficiency)
 - avoiding collisions (safety)

An example

Road traffic system:

- Agents: car drivers
- System goal (two-fold):
 - reaching targets (efficiency)
 - avoiding collisions (safety)

Implicitly cooperative

An example

Road traffic system:

- Agents: car drivers
- System goal (two-fold):
 - reaching targets (efficiency)
 - avoiding collisions (safety)

Implicitly cooperative

Global or selfish fitness while evolving a cooperative driver?

Table of Contents

Scenario and motivation

World

- 2D continuous space, discrete time world
- road (section, intersection), off-road
 - cars move on road only
 - cars collide with other cars and with road side

Car and agents

Car:

- each w/ 5×3 distance sensors
 - to roadside
 - to intersection
 - to other cars

Car and agents

Car:

- each w/ 5 \times 3 distance sensors
 - to roadside
 - to intersection
 - to other cars
- Agent (car driver/controller):
 - assigned to sequence of targets
 - subsequent targets on adjacent road sections

Car and agents

Car:

- each w/ 5 \times 3 distance sensors
 - to roadside
 - to intersection
 - to other cars
- Agent (car driver/controller):
 - assigned to sequence of targets
 - subsequent targets on adjacent road sections
 - neural network
 - input: 5 × 3 distance sensors, car speed, distance to target, direction of target
 - output: steering angle, acceleration/brake

Global goal

Maximize traffic efficiency and safety

Global goal

Maximize traffic efficiency and safety

• Efficiency: the global number of reached targets in the unit of time

$$E = rac{1}{n_{\mathsf{car}}}\sum_{j=1}^{n_{\mathsf{car}}}rac{1}{ au}\left(t_j+1-rac{l_j^f}{l_j^f}
ight)$$

Global goal

Maximize traffic efficiency and safety

• Efficiency: the global number of reached targets in the unit of time

$$E = rac{1}{n_{\mathsf{car}}}\sum_{j=1}^{n_{\mathsf{car}}}rac{1}{ au}\left(t_j+1-rac{l_j^f}{l_j^f}
ight)$$

• Safety: (opposite of) the global number of collisions in the unit of time

$$S = -rac{1}{n_{\mathsf{car}}}\sum_{j=1}^{n_{\mathsf{car}}}rac{c_j}{ au}$$

Neuroevolution of the agents

Goal: evolve a the driver which maximizes, on average, traffic efficiency and safety

We used NEAT

Neuroevolution: global

- individual: controller
- fitness:
 - $f_{glob} = 100E + 0.1S$
 - $n_{\rm sim}$ simulations with $n_{\rm car}$ each, **all with the same controller** under evaluation

Neuroevolution: selfish

- individual: controller
- fitness:
 - $f_{self} = 100E_{self} + 0.1S_{self}$

$$E_{
m self} = rac{1}{ au} \left(t + 1 - rac{l^f}{l^i}
ight) \qquad \qquad S_{
m self} = -rac{c}{ au}$$

• the controller under evaluation inserted in $n_{\rm sim}$ simulations with other $n_{\rm car}-1$ different controllers

Global vs. selfish

Global

• one simulation to assess one controller

Selfish

 one simulation to assess n_{car} controllers at once, but on a proxy of their actual goal

Table of Contents

Scenario and motivation

2 Problem and approach

Evolution:

- $n_{\rm sim} = 3$, $n_{\rm car} = 20$, $\tau = 30$ s (simulated)
- 10 runs, same wall time (24 h) per run for both approaches

Validation of best evolved controllers (10 + 10):

• $n_{\rm sim} = 10$, $n_{\rm car} = \{5, \dots, 50\}$, $\tau = 60 \, {\rm s}$ (simulated)

Evolution:

- $n_{sim} = 3$, $n_{car} = 20$, $\tau = 30$ s (simulated)
- 10 runs, same wall time (24 h) per run for both approaches

Validation of best evolved controllers (10 + 10):

- $n_{sim} = 10$, $n_{car} = \{5, \dots, 50\}$, $\tau = 60$ s (simulated)
 - range of $n_{car} \rightarrow$ "robustness" of evolved controllers to traffic conditions

Evolution:

- $n_{\rm sim} = 3$, $n_{\rm car} = 20$, $\tau = 30$ s (simulated)
- 10 runs, same wall time (24 h) per run for both approaches

Validation of best evolved controllers (10 + 10):

•
$$n_{sim} = 10$$
, $n_{car} = \{5, \dots, 50\}$, $\tau = 60 \, s \text{ (simulated)}$

- $\bullet\,$ range of $\mathit{n_{car}} \rightarrow\,$ "robustness" of evolved controllers to traffic conditions
- homogeneous vs. heterogeneous
 - homogeneous: all cars driven by the same evolved controller
 - heterogeneous: 50% of cars driven by random (unskilled) controllers

Evolution:

- $n_{\rm sim} = 3$, $n_{\rm car} = 20$, $\tau = 30 \, {\rm s}$ (simulated)
- 10 runs, same wall time (24 h) per run for both approaches

Validation of best evolved controllers (10 + 10):

•
$$n_{sim} = 10$$
, $n_{car} = \{5, \dots, 50\}$, $\tau = 60$ s (simulated)

- $\bullet\,$ range of $\mathit{n_{car}} \rightarrow\,$ "robustness" of evolved controllers to traffic conditions
- homogeneous vs. heterogeneous
 - homogeneous: all cars driven by the same evolved controller
 - heterogeneous: 50% of cars driven by random (unskilled) controllers
 - "robustness" of evolved controllers to other driving behaviors

Homogeneous validation

- In general: the heavier the traffic, the lower efficiency and safety
- Trade-off between efficiency and safety: selfish are more efficient, less safe (reasonable)
- Selfish better with light traffic: more capable of "driving alone" a
- Selfish always drive faster

Heterogeneous validation

- Fuzzier difference
- With medium traffic: selfish more efficient, equally safe → robust to presence of unskilled drivers?

Conclusions

In cooperative tasks tackled with neuroevolution:

- selfish-based fitness may replace global-based fitness
- opportunity for robustness
- how to choose a proper selfish-based fitness?

Thanks!

