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a b s t r a c t

The defacement of web sites has become a widespread problem. Reaction to these incidents is often quite
slow and triggered by occasional checks or even feedback from users, because organizations usually lack
a systematic and round the clock surveillance of the integrity of their web sites. A more systematic
approach is certainly desirable. An attractive option in this respect consists in augmenting availability
and performance monitoring services with defacement detection capabilities. Motivated by these consid-
erations, in this paper we assess the performance of several anomaly detection approaches when faced
with the problem of detecting web defacements automatically. All these approaches construct a profile
of the monitored page automatically, based on machine learning techniques, and raise an alert when
the page content does not fit the profile. We assessed their performance in terms of false positives and
false negatives on a dataset composed of 300 highly dynamic web pages that we observed for 3 months
and includes a set of 320 real defacements.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Defacements are a common form of attack to web sites. In these
attacks the legitimate site content is fully or partly replaced by the
attacker so as to include content embarrassing to the site owner,
e.g., disturbing images, political messages, forms of signature of
the attacker and so on. Defacements are usually carried out by
exploiting security vulnerabilities of the web hosting infrastruc-
ture, but there is increasing evidence of defacements obtained by
means of fraudulent DNS redirections, i.e., by penetrating the
DNS registrar rather than the web site. Recent examples of the
two strategies include the massive breach suffered by a US hosting
company (Hackers hit network solutions customers, 2010) and the
redirection that affected a major search site in China (Baidu sues
registrar over DNS records hack, 2010). Attackers may focus their
efforts toward defacing a specific target site, but often they tend
to follow a radically different pattern in which automated tools lo-
cate thousands of web sites that exhibit the same vulnerability and
can thus be defaced simultaneously, with just a few keystrokes
(Danchev, 2008; MultiInjector v0.3 released, 2008).

It seems fair to say that, unfortunately, defacements have
gained a sort of first-level citizenship in the Internet. Nearly 1.7
million snapshots of defacements were stored during 2005–2007
at Zone-H, a public web-based archive (http://www.zone-h.org).
Back in 2006, the annual survey from the Computer Security Insti-
ll rights reserved.
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tute observed that ‘‘defacement of web sites continues to plague
organizations’’ (Gordon, Loeb, Lucyshyn, & Richardson, 2006). Not
only the scenario did not change significantly in the following
years, the latest version of this survey reports that the percent of
responders which suffered this kind of attack in 2009 more than
doubled with respect to 2008—14% vs. 6% (CSI, 2009).

Another side of the problem is the reaction time, i.e., the time it
takes to an organization to detect that its site has been defaced and
react appropriately. Anecdotal evidence suggests that this is a rel-
evant issue, even at large organizations. To mention just a few
examples, the Company Registration Office in Ireland was defaced
in December 2006 and remained so until mid-January 2007 (CRO,
xxxx). Several web sites of Congressional Members in the house.-
gov domain were defaced ‘‘shortly after President Obama’s State
of the Union address’’ and were still defaced at ‘‘4:10 am EST’’
(Congressional web site defacements follow the state of the union,
2010). A systematic study of the reaction time, performed by
means of real-time monitoring of more than 60,000 defaced sites
extracted on-the-fly from ZoneH, showed that 40% of the deface-
ments in the sample lasted for more than 1 week and 37% of the
defacements was still in place after 2 weeks (Bartoli, Davanzo, &
Medvet, 2009). The cited study also showed that these figures do
not change significantly in sites hosted by Internet providers
(and as such presumably associated with systematic administra-
tion) nor by taking into account the importance of these sites as
quantified by their PageRank index. These data confirm the intui-
tion that web sites often lack a systematic surveillance of their
integrity and that the detection of web defacements is usually de-
manded to occasional checks by administrators or to feedbacks
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Fig. 1. Detector architecture. Different arrow types correspond to different types of
data.

Table 1
Sensor categories and corresponding vector portion sizes.

Category Number of sensors Vector size

Cardinality 25 25
RelativeFrequencies 2 117
HashedItemCounter 10 920
HashedTree 2 200
Signature 4 4

Total 43 1466
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from users. Indeed, reaction to a defacement occurred recently at
Poste.it, one of the largest financial institutions in Italy, was not
triggered by site administrators but by a user who called the police
because he happened to find the site defaced on Friday late after-
noon (Le poste dopo l’attacco web Non violati i dati dei correntisti,
2009). Such an extemporaneous approach is clearly unsatisfactory.
A more rigorous and systematic approach capable of ensuring
prompt detection of such incidents is required.

An attractive option in this respect consists in augmenting
availability and performance monitoring services (e.g., 13 free &
cheap website monitoring services, 2008) with defacement detec-
tion capabilities (Bartoli & Medvet, 2006; Medvet & Bartoli, 2007).
Since these services are cheap and non-intrusive, organizations of
essentially any size and budget could indeed afford to exploit these
services for performing a systematic and round the clock surveil-
lance against defacements. Indeed, economics seems to play a
key role in this scenario. Quantifying the cost of late detection of
a defacement is very difficult and weighing this cost against the
cost of better security-related skills, practices and technologies is
even more difficult. In this respect, an external service that is
cheap, can be joined with just a few clicks, without installing any
software and without any impact on daily operating activities
seems to be a sensible framework for promoting systematic sur-
veillance and quicker detection on a large scale. A service of this
kind would also be able to detect defacements induced by fraudu-
lent DNS redirections. Attacks of this form are increasingly more
diffused (Baidu sues registrar over DNS records hack, 2010; Google
blames DNS insecurity for web site defacements, 2009; Hackers hi-
jack DNS records of high profile new zealand sites, 2009; Puerto
rico sites redirected in DNS attack security, 2009) and are very dif-
ficult to detect with detection technologies deployed locally on the
monitored site.

A crucial problem for successful deployment of a defacement
detection service consists in being able to cope with dynamic con-
tent without raising an excessive amount of false alarms. Site
administrators could provide a description of the legitimate con-
tents for their sites at service subscription time. This option re-
quires defining a site-independent way for collecting this
information, whose quality and amount should suffice to cover
all relevant portions and content of the monitored pages. More-
over, the option assumes that site administrators indeed have time
and skills for actually providing those descriptions. A radically dif-
ferent approach consists in extracting the relevant information
automatically by means of machine learning techniques. The poten-
tial advantages of this approach are obvious, as site administrators
would only need to provide the URL of the monitored page and
simply wait for a few days—until the service will have constructed
a profile of the legitimate content automatically. The implicit
assumption is that anomaly detection (Denning, 1987; Gosh,
1998; Mutz, Valeur, Vigna, & Kruegel, 2006; Kruegel & Vigna,
2003) is indeed a feasible approach for a monitoring service of this
kind, i.e., that defacements indeed constitute anomalies with re-
spect to an established profile of the monitored resource and that
false positives may indeed be kept to a minimum despite the
highly dynamic nature of web resources.

In this paper we elaborate on this idea and assess the perfor-
mance of several machine learning approaches when faced with
the defacement detection problem. Clearly, by no means we intend
to provide an extensive coverage of all the frameworks that could
be used (Chandola, Banerjee, & Kumar, 2009; Patcha & Park, 2007;
Tsai, Hsu, Lin, & Lin, 2009). We chose to restrict our analysis to key
approaches that have been proposed for attack detection at host
and network level (Boser, Guyon, & Vapnik, 1992; Breunig, Kriegel,
Ng, & Sander, 2000; Kim & Kim, 2006; Lazarevic, Ertoz, Kumar, Oz-
gur, & Srivastava, 2003; Mukkamala, Janoski, & Sung, 2002;
Ramaswamy, Rastogi, & Shim, 2000; Ye, Chen, Emran, & Vilbert,
2000; Ye, Emran, Chen, & Vilbert, 2002; Ye, Li, Chen, Emran, &
Xu, 2001; Yeung & Chow, 2002). The analysis includes a detection
algorithm that we have developed explicitly for defacement detec-
tion and that exploits a fair amount of domain-specific knowledge
(Bartoli & Medvet, 2006; Medvet & Bartoli, 2007).

Our evaluation is based on a dataset composed of 300 highly
dynamic web pages that we observed periodically for 3 months
and on a sample of 320 defacements extracted from ZoneH. Each
detection algorithm is hence tested against its ability in not raising
false alarms or missing defacements.
2. Our test framework

We developed a prototype framework, which works as follows.
We consider a source of information producing a sequence of read-
ings {r1,r2, . . .} which is input to a detector. The source of informa-
tion is a web page univocally identified by an URL; each reading
r consists of the document downloaded from that URL. The detec-
tor will classify each reading as being negative (legitimate) or posi-
tive (anomalous). The detector consists internally of a refiner
followed by an aggregator, as represented in Fig. 1.
2.1. Refiner

The refiner implements a function that takes a reading r and
produces a fixed size numeric vector v 2 Rn. The refiner is inter-
nally composed by a number of sensors. A sensor is a component
which receives as input a reading and outputs a fixed size vector
of real numbers. The output of the refiner is obtained by concate-
nating outputs from the 43 different sensors of our prototype
and corresponds to a vector of 1466 elements (Medvet & Bartoli,
2007). Sensors are functional blocks and have no internal state: v
depends only on the current input r and does not depend on any
prior reading.

Sensors are divided in five categories, accordingly to the way in
which they work internally. Table 1 indicates the number of sen-
sors and the corresponding size for the vector v portion in each
category.
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2.1.1. Cardinality sensors
Each sensor in this category outputs a vector composed by only

1 element v1. The value of v1 corresponds to the measure of some
simple feature of the reading (e.g., the number of lines).

The features taken into account by the sensors of this category
are:

� Tags: block type (e.g., the output v1 of the sensor is a count of
the number of block type tags in the reading), content type, text
decoration type, title type, form type, structural type, table type,
distinct types, all tags, with class attribute.
� Size attributes: byte size, mean size of text blocks, number of

lines, text length.
� Text style attributes: number of text case shifts, number of letter-

to-digit and digit-to-letter shifts, uppercase-to-lowercase ratio.
� Other items: images (all, those whose names contain a digit),

forms, tables, links (all, containing a digit, external, absolute).

2.1.2. RelativeFrequencies sensors
Each sensor s in this category outputs a vector composed by ns

elements v ¼ jv1; . . . ;vns j. Given a reading i, s computes the rela-
tive frequency of each item in the item class analyzed by s (e.g.,
lowercase letters), whose size is known and equal to ns. The value
of the element vk is equal to the relative frequency of the kth item
of the given class.

This category includes two sensors. One analyzes lowercase let-
ters contained in the visible textual part of the resource (ns = 26);
the other analyzes HTML elements of the resource—e.g., HTML,
BODY, HEAD, and so on—with ns = 91.
2.1.3. HashedItemsCounter sensors
Each sensor s in this category outputs a vector composed by ns

elements v ¼ jv1; . . . ;vns j and works as follows. Given a reading i, s:
(1) sets to 0 each element vk of v; (2) builds a set L = {l1, l2, . . .} of
items belonging to the considered class (e.g., absolute linked URLs)
and found in i; note that L contains no duplicate items; (3) for each
item lj, applies a hash function to lj obtaining a value 1 6 kj 6 ns; (4)
increments vkj by 1.

This category includes 10 sensors, each associated with one of
the following item classes: image URLs (all images, only those
whose name contains on or more digits), embedded scripts, tags,
words contained in the visible textual part of the resource and
linked URLs. The link feature is considered as five different sub-fea-
tures, i.e., by five different sensors of this group: all external, all
absolute, all without digits, external without digits, absolute with-
out digits. All of the above sensors use a hash function such that
ns = 100, except from the sensor considering embedded scripts
for which ns = 20. Note that different items could be hashed on
the same vector element. We use a large vector size to minimize
this possibility, which cannot be avoided completely however.
2.1.4. HashedTree sensors
Each sensor s in this category outputs a vector composed by ns

elements v ¼ jv1; . . . ;vns j and works as follows. Given a reading i, s:
(1) sets to 0 each element vk of v; (2) builds a tree H by applying a
sensor-specific transformation on the HTML/XML tree of i (see be-
low); (3) for each node hl,j of the level l of H, applies a hash function
to hl,j obtaining a value kl,j; (4) increments vkl;j by 1.

The hash function is such that different levels of the tree are
mapped to different adjacent partitions of the output vector v,
i.e., each partition is ‘‘reserved’’ for storing information about a sin-
gle tree level.

This category includes two sensors, one for each of the follow-
ing transformations:
� Each start tag node of the HTML/XML tree of reading i corre-
sponds to a node in the transformed tree H. Nodes of H contain
only the type of the tag (for example, Table could be a node of
H, whereas hTable CLASS = ‘‘NAME’’i could not).
� Only nodes of the HTML/XML tree of reading i that are tags in a

predefined set (HTML, BODY, HEAD, DIV, Table, TR, TD, FORM,
FRAME, INPUT, TEXTAREA, STYLE, SCRIPT) correspond to a
node in the transformed tree H. Nodes of H contain the full start
tag (for example, hTD CLASS = ‘‘NAME’’i could be a node of H,
whereas hP ID = ‘‘NEWS’’i could not).

Both sensors have ns = 200 and use 2, 4, 50, 90 and 54 vector ele-
ments for storing information about respectively tree levels 1, 2, 3, 4
and 5; thereby, nodes of level 6 and higher are not considered.

2.1.5. Signature sensors
Each sensor of this category outputs a vector composed by only

1 element v1, whose value depends on the presence of a given attri-
bute. For a given reading i, v1 = 1 when the attribute is found and
v1 = 0 otherwise.

This category includes four sensors, one for each of the follow-
ing attributes (rather common in defaced web pages):

� has a black background;
� contains only one image or no images at all;
� does not contain any tags;
� does not contain any visible text.

2.2. Aggregator

The aggregator is the core component of the detector and it is
the one that actually implements the anomaly detection. The
aggregator output y can be one of the following: negative, if
the input r is classified as legitimate, and positive, if the reading
is classified as anomalous.

The aggregator internally uses a profile to classify readings,
which is constructed before starting the monitoring activity. The
aggregator compares the current reading against the profile and
classifies it as anomalous according to an aggregator-specific crite-
rion. The profile is computed using a learning sequence S composed
by genuine readings (that thus have to be classified as negative)
collected by observing the web page during a preliminary learning
phase and sample attacks provided by an operator (that thus have
to be classified as positive). We will denote by S� and S+ the por-
tions of S containing genuine readings and attacks, respectively.

As will be described in more detail when discussing the exper-
iments, the learning sequence for a resource contains only genuine
readings of that resource (beyond the sample attacks). In other
words, we constructed a different profile for each resource. In prin-
ciple, one could build one single profile attempting to capture all
resources that are not defacements and then classify as anomalous
any deviation from that profile. We did not pursue this option be-
cause in preliminary experiments, not reported here for brevity, we
could not devise any clear and sharp separation among legitimate
pages and defacements.

In the comparative evaluation of techniques presented in the
next sections, we set an aggregator that we developed earlier as
baseline (Bartoli & Medvet, 2006). This aggregator implements a
form of anomaly detection based on Domain Knowledge and is
shortly described in Section 3.6.
3. Anomaly detection techniques

In this section we describe the techniques that we assessed in
this comparative experimental evaluation: all these techniques
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have been proposed and evaluated for detecting intrusions in host
or network based IDSs. We chose not to include any forms of Bayes
classifier because of the difficulty in selecting meaningful values
for the prior probability of suffering a defacement. While such esti-
mates may be obtained easily for network-level attacks or for spam
filtering (in those cases any organization exposed on the Internet
will collect a sufficient amount of positive samples in a short time),
we could not devise any practical way for obtaining values mean-
ingful in our scenario.

Each technique consists of an algorithm aimed at producing a
binary classification of an item expressed as a numeric vector (or
point) p 2 Rn. We incorporated each technique in our framework
by implementing a suitable aggregator, that is, all these tech-
niques are based on the same refiner and apply different criteria
for classifying a reading. Each technique constructs a profile with
a technique-specific method, basing on the readings contained in
a learning sequence S. The learning sequence is composed by
both negative readings (S�) and positive readings (S+). Only
one of the techniques analyzed (Support Vector Machines) in-
deed make use of S+, however. For all the other methods S = S�

and S+ = ;.

3.1. kth nearest

This technique (Kim & Kim, 2006; Lazarevic et al., 2003;
Ramaswamy et al., 2000) is distance-based, often computed
using Euclidean metric. For this aggregator the profile consists
of the learning sequence S�. Let k be an integer positive number
and p the investigated point; we define the kth nearest distance
Dk(p) as the distance d(p,o) where o is a generic point of S� such
that:

1. for at least k points o
0 2 S� it holds that d(p,o0) 6 d(p,o), and

2. for at most k � 1 points o0 2 S� it holds that d(p,o
0
) < d(p,o).

We define a point p as a positive if Dk(p) is greater than a pro-
vided threshold t.

In our experiments we used the Euclidean distance, we set k = 3
and t = 1.01.

3.2. Local Outlier Factor

Local Outlier Factor (from here on LOF) (Breunig et al., 2000;
Lazarevic et al., 2003) is an extension to the kth nearest distance,
assigning to each evaluated point an outlying degree. The main
advantage of LOF on other distance based techniques is the way
it handles the issue of varying densities in the data set, which is
especially useful when points of a class are scattered so as to form
different clusters. The LOF value of a point p represents its outlying
degree computed as the ratio of the average local density of the k
nearest neighbors and the local density of p, as follows. Also in this
case, the profile simply contains the learning sequence S�.

1. compute the kth nearest distance Dk(p) and define k-distance
neighborhood Nk(p) as a set containing all the points o 2 S� such
that d(p,o) 6 Dk(p);

2. define reachability distance reach-dist (o,p) = max {Dk(p),d(o,p)};
3. compute local reachability density lrd (p) as the inverse of the

average reachability distance of points belonging to Nk(p);
4. finally, LOF value LOF(p) is defined as the average of the ratios of

lrd(o), with o 2 Nk(p), and lrd(p).

A point p is defined as a positive if LOFðpÞ R 1
1þ� ;1þ �
h i

, where �

represents a threshold. In our experiments we used the Euclidean
distance for d, setting � = 1.5.
3.3. Hotelling’s T-Square

Hotelling’s T-Square method is a test statistic measure for
detecting whether an observation follows a multivariate normal
distribution. It has been proposed for intrusion detection on the
ground that when the observed variables are independent and
their number is sufficiently large (a few tens), then the T-Square
statistics of the observations follows approximately a normal dis-
tribution irrespective of the actual distribution of each variable
(Hotelling, 1931; Ye et al., 2000, 2001, 2002). This technique is
based on the covariance matrix C composed by all elements of S�

and by the investigated point p. The profile consists of C and of
the averages vector l computed on the learning sequence S�.

Hotelling’s T-Square statistic is defined as:

t2ðpÞ ¼ mðp� lÞT C�1ðp� lÞ

where m is the length of S� and l is the vector of the averages of S�

vectors. If C is a singular matrix, we slightly modify it until it be-
comes non-singular by adding a small value to its diagonal.

We define a point p as positive if t2(p) > max{t2(o) jo 2 S�} + t,
where t is a predefined threshold. In our experiments we set t = 5.

This method is very similar to the one used in Mahalanobis
(1936) and Lazarevic et al. (2003), based on the Mahalanobis dis-
tance; we actually implemented both aggregators, but since the re-
sults are almost identical we will further investigate only the one
based on Hotelling’s T-Square.

3.4. Parzen windows

Parzen Windows (Kim & Kim, 2006; Parzen, 1962; Yeung &
Chow, 2002) provide a method to estimate the probability density
function of a random variable. The profile consists of the learning
sequence S�.

Let p = {x1,x2, . . . ,xn} 2 Rn be the investigated point and let Xi be a
random variable representing the ith component of p. We need to
approximate the unknown density function f(xi) of each Xi. Having
obtained such an approximation ~f ðxiÞ, as described below, we will
say that a component xi of p is anomalous if and only if ~f ðxiÞ < t1

and we will classify point p as positive if a percentage of its com-
ponents greater than t2 is anomalous (t1 and t2 being two parame-
ters). In other words, with this method a probability distribution is
estimated for each component of the input vector using its values
along the learning sequence; then an alarm is raised if too many
components seem not to agree with their estimated distribution.

Let the window function w(x) be a density function such that its
volume is V0 ¼

Rþ1
�1 f ðxÞdx. We considered two window functions:

Gaussian : wðxÞ ¼ 1
r
ffiffiffiffiffiffiffi
2p
p e�

x2

2r2

Pulse : wðxÞ ¼
1 if � a 6 x 6 a
0 otherwise

�

We approximate f(xi) as follows (xk
i is the value of the ith com-

ponent of the kth point of S�):

~f ðxiÞ ¼
1
n

Xn

k¼1

1
Vk

w
xi � xk

i

Vk

� �
ð1Þ

where Vk ¼ V0
ln k; note that the weight term Vk decrease for older val-

ues (i.e., for points of S� with higher k).
We set r = 1, t1 = 0.1 and t2 = 7.5% for Parzen Gaussian and

a = 0.25, t1 = 0.3 and t2 = 10% for Parzen Pulse.

3.5. Support Vector Machines

Support Vector Machines (SVM) (Boser et al., 1992; Lazarevic
et al., 2003; Mukkamala et al., 2002) use hyperplanes to maximally
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separate N classes of data, where N = 2 in our setting. This tech-
nique uses a kernel function to compute the hyperplanes using
both readings of S� and S+. In our experiments we used the Radial
Basis Function (as part of the libsvm implementation (Chang & Lin,
2001)).

Once the hyperplanes are defined, a point p is considered as a
positive if it is contained in the corresponding class. The profile
stores the support vectors computed on the whole learning se-
quence S, i.e., both S� and S+.

3.6. Domain Knowledge aggregator

This aggregator exploits the knowledge about the refiner struc-
ture and hence about the meaning of the sensor associated with
each slice of v. In a nutshell, this aggregator transforms each slice
in a boolean value by applying a sensor-specific transformation.
The transformation involves a comparison against a sensor-specific
profile computed in the learning phase. When the boolean ob-
tained from a slice is true, we say that the corresponding sensor
fires. If the number of categories with at least one sensor that fires
is at least t (t = 3 in our experiments), the reading is classified as
anomalous.

We describe the details of the learning phase and monitoring
phase below. All sensors in the same category are handled in the
same way.

3.6.1. Cardinality
In the learning procedure the aggregator determines mean g

and standard deviation r of the values fv1
1; . . . ;v1

l g—recall that Car-
dinality sensors output a vector composed by a single value. In the
monitoring phase a sensor fires if its output value v1 is such that
jv1 � gjP 3r.

3.6.2. RelativeFrequencies
A sensor in this category fires when the relative frequencies (of

the class items associated with the sensor) observed in the current
reading are too much different from what expected. In detail, let nS

be the size of the slice output by a sensor s. In the learning phase,
the aggregator performs the following steps: (i) evaluates the
mean values fg1; . . . ;gns

g of the vector elements associated with
s; (ii) computes the following for each reading vk of the learning se-
quence (k 2 [1, l]):

dk ¼
Xns

i¼1

jv i
k � gij ð2Þ

(iii) computes mean g and standard deviation r of {d1, . . . ,dl}.
In the monitoring phase, for a given reading v, the aggregator

computes:

d ¼
Xns

i¼1

jv i � gij ð3Þ

The corresponding sensor fires if and only if jd � gjP 3r.

3.6.3. HashedItemsCounter
Let ns be the size of the slice output by a sensor s. In the learning

procedure, the aggregator computes for each slice element the
minimum value across all readings in the learning sequence, i.e.
fm1; . . . ;mnsg. In the monitoring phase s fires if and only if at least
one element vi in the current reading is such that vi < mi.

The interpretation of this category is as follows. Recall that
each slice element is a count of the number of times an item ap-
pears in the reading (different items are hashed to different slice
elements). Any non-zero element in fm1; . . . ;mnsg, thus, corre-
sponds to items which appear in every reading of the learning
sequence. In the monitoring phase the sensor fires when there
is at least one of these ‘‘recurrent items’’ missing from the cur-
rent reading.
3.6.4. HashedTree
Sensors in this category are handled in the same way as those

of the previous category, but the interpretation of a firing is
slightly different. Any non-zero element in fm1; . . . ;mnsg corre-
sponds to a node which appear in every reading of the learning
sequence, at the same level of the tree. In the monitoring phase
the sensor fires when a portion of this ‘‘recurrent tree’’ is missing
from the current reading (i.e., the sensor fires when the tree cor-
responding to the current reading is not a supertree of the recur-
rent tree). We omit further details for simplicity, as they can be
figured out easily.
3.6.5. Signature
A sensor in this category fires when its output is 1. Recall

that these sensors output a single element vector, whose value
is 1 whenever they find a specific attribute in the current
reading.
4. Experiments and results

4.1. Datasets

We built two datasets different both in time span and number
of resources. The Large–Long dataset consists of snapshots of 300
highly dynamic web resources1 that we sample every 6 h for
3 months, thus totaling a negative sequence of 350 readings for each
web page web pages for 3 months, collecting a reading for each page
every 6 h, thus totaling a negative sequence of 350 readings for each
web page. The archive include technical web sites (e.g., The Server
Side, Java Top 25 Bugs), newspapers and news agencies both from
the US and from Italy (e.g., CNN Business, CNN Home, La Repubblica,
Il Corriere della Sera), e-commerce sites (e.g. Amazon Home), sites of
the Italian public administration, the top 100 blogs from CNET, the
top 50 Universities and so on. Some resources were hand picked
(mostly those in the technicals, e-commerce and USA newspapers
groups) while the others were collected automatically by selecting
the most popular resources from public online lists (e.g.: topuni-
versities.com for Universities). Almost all resources contain dy-
namic portions that change whenever the resource is accessed. In
most cases such portions are generated in a way hardly predictable
(including advertisements) and in some cases they account for a sig-
nificant fraction of the overall content.

We also collected an attack archive composed by 320 readings
extracted from a publicly available defacements archive (http://
www.zone-h.org). The set is composed by a selection of real
defacements performed by different hackers or teams of hackers:
we chose samples with different size, language, layout and with
or without images, scripts and other rich features. We attempted
to build a set with wide coverage and sufficiently representative
of real-world defacements.2

The Small–Short dataset is the same that we used in our previous
works (Medvet & Bartoli, 2007; Bartoli & Medvet, 2006). It is a sub-
set of the previous dataset both in number of resources and in time
length. It is composed by 15 resources (listed in Table 3) limited to
125 contiguous snapshots. The attack archive is composed by 95
readings of the previous attack archive (selected so as to be repre-
sentative enough of the full sample).

http://www.zone-h.org
http://www.zone-h.org
http://tinyurl.com/exsa-resources-1
http://tinyurl.com/exsa-attacks-1


Table 2
Time span for the two datasets.

Dataset Number of resources S� S+ S�t Sþt

# Days # # Days #

Small–Short 15 50 12 20 75 19 75
Large–Long 300 50 12 20 300 75 300

Table 3
List of web pages composing the Small–Short dataset. Concerning Amazon – Home
page and Wikipedia – Random page, we noticed that most of the content section of
the page changed at every reading, independently from the time.

Web page

Amazon – Home page
Ansa – Home page
Ansa – Rss sport
ASF France – Home page
ASF France – Traffic page
Cnn – Businnes
Cnn – Home page
Cnn – Weather
Java – Top 25 bugs
Repubblica – Home page
Repubblica – Tech. and science
The Server Side – Home page
The Server Side – Tech talks
Univ. of Trieste – Home page
Wikipedia – Random page

Table 4
Preliminary results on the Small–Short dataset.

Aggregator FPR % FNR %

AVG MAX StdDev AVG MAX StdDev

KNearest 100.00 100.00 0.00 0.00 0.00 0.00
SVM 27.56 96.00 38.90 29.93 57.33 26.89
PulseParzen 6.44 84.00 19.15 0.00 0.00 0.00
GaussianParzen 11.70 84.00 19.93 0.00 0.00 0.00
DomainKnowledge 3.56 53.33 12.16 0.00 0.00 0.00
LOF 3.63 49.33 11.37 11.33 100.00 31.36
Hotelling 96.59 100.00 7.33 0.00 0.00 0.00
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4.2. Methodology

We used False Positive Ratio (FPR) and False Negative Ratio
(FNR) as performance indexes. For each page we executed a learn-
ing phase followed by a testing phase in which we measured false
positives and false negatives. Table 2 summarizes the length and
corresponding time frames for the learning and testing sequences,
as explained in detail below.

In detail, in the learning phase: (i) we built a sequence S+ of po-
sitive readings composed by 20 random elements of the attack ar-
chive; (ii) we built a sequence S� of negative readings composed by
the first 50 elements of the corresponding negative sequence (i.e.,
roughly 2 weeks); (iii) we built the learning sequence S by joining
S+ and S�; and (iv) we trained each aggregator on S (recall that only
one aggregator actually looks at S+, as pointed out in Section 3).

In the monitoring phase: (i) we built a testing sequence St by
joining a sequence S�t , composed by the remaining readings of
the corresponding negative sequence (300 or 75, depending on
the dataset), and a sequence Sþt , composed by the remaining read-
ings of the attack archive (again, 300 or 75 up to the used dataset);
(ii) we fed the aggregator with each reading of St. We counted each
anomaly raised for elements of S�t as a false positive. We counted
each element of Sþt not raised as an anomaly as a false negative.
4.3. Preliminary results

This experiment has been conducted on the Small–Short data-
set. The results are given in Table 4.

Concerning defacement detection, it can be seen that 5 out of 7
aggregators managed to detect every injected defacement (i.e.,
FNR = 0%). SVM and LOF heavily failed, scoring an average FNR of
30% and 11% respectively.

In terms of false positives, DomainKnowledge provided the best
result with FPR below 4%. The next best value is that of LOF, whose
FNR is unsatisfactory. FPR results indicate that the very good FNR
results for KNearest and Hotelling actually are misleading: these
two aggregators exhibit a strong tendency to classify every ele-
ment in St as being anomalous, irrespective of its actual content
with respect to the profile.

4.4. Feature selection

Despite the fact that the previous experiment was carried out
on the Small–Short dataset, its execution required a large amount
of time and computing resources. Based on this observation, cou-
pled with the unsatisfactory performance of all aggregators (except
for DomainKnowledge), we decided to execute further experi-
ments by applying a dimensionality reduction to the dataset.
Clearly, this choice adds a further dimension to the design space,
due to the many techniques that could be used (Ailon & Chazelle,
2010; Jolliffe, 2002; Kriegel, Krger, & Zimek, 2009; Tsai et al.,
2009). We chose to restrict our analysis to a feature selection proce-
dure based on a backward elimination algorithm similar to the one
proposed in Song, Smola, Gretton, Borgwardt, and Bedo (2007) and
detailed below. For each resource we selected a subvector of v
including only its elements which appear to have more significance
in the decision, i.e., those with maximal correlation with the de-
sired output.

All the experiments in the following sections have been per-
formed with feature selection enabled for all the aggregators ex-
cept for the DomainKnowledge. Since its performance and run-
time cost do not make the use of the full vector v unfeasible, we
thought that exercising this aggregator with less features than it
may handle would not be very interesting.

The feature selection algorithm is applied once for each web
page and works as follows. Let Xi denote the random variable asso-
ciated with the i-th element of v (i.e., vi) across all readings of S. Let
Y be the random variable describing the desired values for the
aggregator: Y = 0, " reading 2S�; Y = 1 otherwise, i.e., "
reading 2 S+.

We computed the absolute correlation ci of each Xi with Y and,
for each pair hXi,Xji, the absolute correlation ci,j between Xi and Xj.
Then, we executed the following iterative procedure, starting from
a set of unselected indexes IU = {1, . . . ,1466} and an empty set of se-
lected indexes IS = ;: (1) we selected the element i 2 IU with the
greatest ci and moved it from IU to IS; (2) "j 2 IU, we set cj: = cj � ci,j.
We repeated these two steps until a predefined size s for IS is
reached. We selected for each technique the maximum value of s
that appeared to deliver acceptable performance: we set s = 10
for kth nearest, LOF and Hotelling and s = 20 for the others. Point
p will include only those elements of vector v whose indexes are
in IS. In other words, we take into account only those indexes with
maximal correlation with the desired output (step 1), attempting
to filter out any redundant information (step 2).

4.5. Results with feature selection

Table 5 shows the results for the Small–Short dataset, which are
much better than those obtained on the same dataset without fea-



Table 5
Small–Short dataset: results with feature selection.

Aggregator FPR % FNR %

AVG MAX StdDev AVG MAX StdDev

KNearest 0.52 6.67 1.61 0.30 4.00 0.95
SVM 0.00 0.00 0.00 0.00 0.00 0.00
PulseParzen 0.30 4.00 0.95 0.00 0.00 0.00
GaussianParzen 10.81 69.33 19.32 0.00 0.00 0.00
DomainKnowledge 3.56 53.33 12.16 0.00 0.00 0.00
LOF 5.41 49.33 12.56 0.00 0.00 0.00
Hotelling 5.63 53.33 13.34 0.00 0.00 0.00

Table 6
Large–Long dataset: results with feature selection.

Aggregator FPR % FNR %

AVG MAX StdDev AVG MAX StdDev

KNearest 19.43 100.00 29.94 0.85 79.67 6.24
SVM 6.45 100.00 17.80 0.10 15.33 0.91
PulseParzen 14.66 100.00 25.07 0.20 8.00 0.74
GaussianParzen 28.48 100.00 31.99 0.08 5.33 0.54
DomainKnowledge 19.10 100.00 30.42 0.02 5.67 0.33
LOF 24.18 100.00 33.95 6.21 99.00 20.15
Hotelling 24.76 100.00 32.33 0.27 26.00 1.60
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Fig. 2. False Positive Ratio over time (expressed as index n in the negative samples
of the testing sequence S�t ). Table 7

Large–Long dataset: results with feature selection and retuning.

Aggregator FPR % FNR %

AVG MAX StdDev AVG MAX StdDev

KNearest 2.23 38.67 5.50 0.85 79.67 6.24
SVM 0.07 2.00 0.19 0.10 15.33 0.91
PulseParzen 0.46 26.00 1.67 0.20 8.00 0.74
GaussianParzen 2.28 50.00 4.47 0.08 5.33 0.54
DomainKnowledge 0.25 4.33 0.47 0.02 5.67 0.33
LOF 3.18 15.33 3.68 6.21 99.00 20.15
Hotelling 0.74 5.00 0.88 0.27 26.00 1.60

Table 8
Average computation time of a single resource snapshot for different policies (ms).

Aggregator Retuning: NO Retuning: NO Retuning: YES
FeatSel: NO FeatSel: YES FeatSel: YES

KNearest 70.24 3.87 3.84
SVM 41.93 3.97 3.93
PulseParzen 3.36 3.94 4.07
GaussianParzen 6.02 4.02 3.46
DomainKnowledge 0.18 0.18 0.82
LOF 111.87 5.10 4.95
Hotelling 13175.68 3.12 3.46
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ture selection (Table 4; recall that the result of DomainKnowledge
are identical in the two scenarios).

Concerning defacement detection, FNR values suggest that all
the techniques proved to be effective when detecting defacements.
From the point of view of false positives, the behavior of all the
aggregators improve but their performance is not equivalent.

An excellent result comes from SVM, which managed to classify
all the negative readings correctly, while still detecting all the at-
tacks. LOF and Hotelling managed to score as well as the Domain-
Knowledge, while KNearest and PulseParzen scored even better;
GaussianParzen did not score well, being unable to classify genuine
pages for several resources.

Table 6 shows the results for the Large–Long dataset. Perfor-
mance with this larger and longer sample are sensibly worse than
in the previous scenario, from all points of view. SVM still exhibits
the best results.

A deeper analysis of the raw data suggests that the main reason
for the worse performance could be the increase in the time inter-
val used for validation rather than the larger sample size. Fig. 2
shows the average FPR at every time instant, expressed as the in-
dex n of the reading of S�t . It can be observed that many aggregators
perform well at the beginning but then FPR steadily increases for
all the aggregators, reaching unacceptable values quickly. From a
different point of view, the quality of the profile constructed in
the learning phase degrades progressively and eventually becomes
no longer adequate. It seems mandatory, thus, to adopt an ap-
proach in which the profile of the resources is upgraded at regular
intervals.

4.6. Results with feature selection and retuning

The previous experiments were done by constructing the profile
of each web page only once, that is, by locking the internal state of
each aggregator.

We also experimented without locking the internal state, as fol-
lows. After the initial learning phase, whenever a reading of S�t was
evaluated, we added that reading to S� and removed the oldest
reading from S� (in other words, we used a sliding window of
the 50 most recent readings of S�); then, a new profile was imme-
diately computed using the updated S� (S+ is never changed). In
this way, we enabled a sort of continuous retuning that allowed
each aggregator to keep the corresponding profile in sync with
the web page, even for long time frames (i.e., the large dataset).

Please note that we froze the aggregator state before submitting
positive samples, since we are not interested into measuring the
system effectiveness when detecting several different defacements
after a false negative; hence, the results in terms of FNR will be the
same of Section 4.5.

Table 7 shows the results we obtained. As expected, all tech-
niques exhibited a sensibly lower FPR; nevertheless, some aggrega-
tors (KNearest, PulseParzen and GaussianParzen) still show a high
value of maximum FPR.

The SVM aggregator scored even better than Domain Knowl-
edge in terms of FPR (0.07% vs. 0.25%); however, the Domain
Knowledge still proves to be the best one when comparing FNRs
(0.10% vs. 0.02%).

4.7. Elaboration time

A key element of the system hereby proposed is its capability to
provide a result in a reasonably low amount of time. Table 8 shows
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average elaboration times for different system configurations (as
explained in the three previous sections) expressed in millisec-
onds. All the computations were performed on a twin quad core In-
tel Xeon E5410 with 8 Gb of ram; please note that notwithstanding
the elevate number of cores, the evaluation of every resource snap-
shot is always contained in a single thread—thus using a single
core.

The Domain Knowledge is the fastest in all the configurations;
as expected, its response time slightly increases (+70 ms) when
the continuous retuning is performed.

All the other aggregators are slower by at least three orders of
magnitude when not selecting the features (i.e., when all the
1466 elements of the vector are considered), with Hotelling requir-
ing almost 13 s for every iteration.

On the other side, performing the continuous retuning does not
require too much additional time for the not-Domain Knowledge
aggregators.

Table 9 shows how scalable each aggragator is, measured as
snapshots that each CPU core could examine during 1 h (not con-
sidering delays on the network-end of the system).

Being the fastest, the DomainKnowledge could process more
than 70,000 snapshots per hour on a single-core CPU; all the other
aggregators lay in the 12,000—15,000 interval. Since each aggrega-
tor is trained for every resource, different resources can be ob-
served in different threads, thus allowing an easy way to scale on
several CPU cores/machines.
Table 9
Resource snapshots evaluated per hour on a
single core.

Aggregator Snapshots/h

KNearest 15,645
SVM 15,263
PulseParzen 14,749
GaussianParzen 17,356
DomainKnowledge 73,620
LOF 12,111
Hotelling 17,321

Fig. 4. Sensors usage. Different patte
4.8. Discussion of feature selection

In this section we will investigate how the feature selection
algorithm acts on the Large–Long dataset. As described in Section
4.4, we execute the feature selection algorithm once for each re-
source. The algorithm takes into account only features with maxi-
mal correlation with the desired output, attempting to filter out
any redundant features.

Fig. 3 plots the number of times each feature has been selected.
Features are sorted in decreasing order for the sake of clarity. It can
be seen that the selection count is highly skewed: only 350 fea-
tures over 1466 have been selected at least once; less than 30 fea-
tures were selected in more than 20% resources; only four features
have been used in more than half of the 300 resources.

Fig. 4 provides a different view of the data, at the sensor level
rather than at the feature level. The figure plots how many times,
in percentage over the full dataset, each sensor has been used.
We say that a sensor is used when at least one of its features is se-
lected (recall that the number of features associated with each sen-
sor depends on the nature of the sensor itself, in Table 1). It can be
seen that usage data is highly skewed also at the sensor level: 10
out of 43 sensors are never selected. Interestingly, 9 of the never
rns relate to different categories.

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600

U
sa

ge
(%

)

Number of features

×
×
××
××××××××××××××××××××××××××××××××××× ×××××××××××××××××××××××××× ×××× ××××××××××××××××× ×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××× ××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××× ××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××× ×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

Fig. 3. Feature selection count.
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used sensors belongs to the Cardinality category, which means all
these sensors are associated with only one feature. Sensors in the
RelativeFrequencies categories are used almost always, whereas
HashedTree and Signature sensors are also used quite often.

Although feature selection turns out to be a necessity (except
for the DomainKnowledge aggregator) a question arises whether
this choice might facilitate the attackers’ job. In particular, an at-
tacker could choose to modify only features that are not selected
by the feature selection algorithm. For example, the attacker could
target a never used sensor like TextCaseShift, i.e., by altering all the
page text elements so as to introduce a continuous upper to lower
case shift. This attack strategy would circumvent completely all the
aggregators (again, except for DomainKnowledge).

In other words, automated defacement detection could become
an adversarial game and use of feature selection would be an
intrinsic potential weakness of the defense strategy. Whether this
potential weakness may or may not be practically relevant is un-
clear, though. Along the line of the previous example, altering
the text case distribution in a page could be a satisfactory objective
for some attackers (and an embarrassing breach for some defend-
ers) but not for others. Indeed, whether such a change would
match the notion of defacement is questionable. Moreover, there
is in general a functional dependency between features, in the
sense that user-interesting properties of page are generally re-
flected on several features. For example, an attacker could target
other unused sensors like the NoText, Bytes and Links and conse-
quently remove all the text from a page. On the other hand, such
a change would affect other sensors including some of those that
tend to be selected often like TagNamesRelativeFrequency and
alike. It follows that crafting defacements so as to systematically
focus on features irrelevant for the aggregator may or may not
be an effective attack strategy and further research is required in
this respect.

We also observe that the attacker might not have precise
knowledge of the set of selected features because the outcome of
the feature selection algorithm depends on the composition of
the attack set, which may be varied and/or kept secret. Indeed, in
detection systems based on forms of machine learning—like
ours—the standard security practice consists in assuming that the
learning algorithm is common knowledge whereas the set of fea-
tures used by a specific instance of the algorithm is kept secret,
which is feasible in systems with a small number of deployments
(Barreno, Nelson, Sears, Joseph, & Tygar, 2006). A materialization
of this principle can be found in spam filtering: while the general
principles of spam filtering tools are well known, the exact details
and settings of the tools used, say, by Gmail or Hotmail, are kept
secret.
5. Concluding remarks

We assessed experimentally the performance of several tech-
niques for automated anomaly-based detection of web deface-
ments. According to our results, DomainKnowledge, SVM,
PulseParzen and Hotelling all exhibit FNR and FPR values suffi-
ciently low to deserve consideration—average FPR lower than 1%,
while being able to correctly detect almost all the simulated at-
tacks (FNR ’ 0%). Such a finding combined with the moderate com-
puting cost, in particular for DomainKnowledge, suggests that the
approach may be practical. KNearest, GaussianParzen and LOF, on
the other hand, do not appear to provide adequate performance.
It could be interesting to perform a deeper analysis of the impact
of size and quality of the attack set on the performance of SVM,
being the only approach whose training requires positive samples.

A feature selection aimed at drastically reducing the dimension
of the input space turned out to be a necessity for all the ap-
proaches, except for DomainKnowledge, both from the point of
view of performance and computing cost. In an adversarial sce-
nario, the fact that an aggregator systematically ignores certain
features might constitute an opportunity worth exploring by the
attackers.

Our DomainKnowledge aggregator is one of those that exhibits
better performance and appears to have two key advantages over
the other alternatives. First, it is intrinsically able to provide an
explanation for the alerts. It suffices, for example, to associate each
alert with a summary of the sensors that fired—e.g., an anomalous
number of links in the page, a missing tag and alike. The ability to
understand the reason for an alert easily is often deemed essential
by operators (Xu, Huang, Fox, Patterson, & Jordan, 2009) and may
allow detecting false positives more quickly. These indications
can hardly be provided using the other techniques. Second, it al-
lows exploiting apriori knowledge about the monitored resources,
when available and appropriate. An actual deployment of a service
based on DomainKnowledge aggregator could allow administra-
tors of monitored site to declare that the firing of a certain sensor
is a sufficient condition for generating an alert. For example, the
banner of a site might be a component that should never
change—a conclusion that may not be drawn automatically based
by merely observing the training set. Providing similar functional-
ity with the other techniques appear to be quite difficult.
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